BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC I: QEDS	SEMESTER : II SESSION : SP/2022
TIME:	SUBJECT: ED111 INTERMEDIATE ANALYSIS 3 Hours	FULL MARKS: 50
2. Atter 3. The r	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks npt all questions. missing data, if any, may be assumed suitably. es/Data hand book/Graph paper etc. to be supplied to the candidates in t	
Q.1(a)	Show that the sequence of functions $\{f_n(x)\}$, where $f_n(x) = nxe^{-nx^2}, x \ge 0$	[5]
Q.1(b)	is not uniformly convergent on $[0, a]$, $a > 0$. Find the value of p for which the series $\sum_{n=1}^{\infty} \frac{2x}{4n^p + x^2n^q}$ converges uniformly for $q \ge 0$.	over any finite interval [<i>a</i> , <i>b</i>] [5]
Q.2(a)	Find the radius of convergence and the exact interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n}{(2n+1)^2} (x-2)^{3n}.$	
Q.2(b)	Find the Fourier coefficients and Fourier series of the periodic function $f(x - x^2, -\pi < x < \pi$. Hence deduce that $\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$	x) in $[-\pi, \pi]$, where $f(x) = [5]$
Q.3(a)	Let $f:[a,b] \to \mathbb{R}$ be bounded and $\alpha:[a,b] \to \mathbb{R}$ be monotonic increasing function. Prove that f is [5] Riemann integrable if and only if for given $\epsilon > 0$, there exists a partition $P \in \mathbb{P}$ such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$, where \mathbb{R} is the set of all partitions of $[a, b]$	
Q.3(b)	where \mathbb{P} is the set of all partitions of $[a, b]$. Show that the function $[x]$, where $[x]$ is the greatest integer not greater that	an x is Riemann integrable in [5]

- Q.3(b) Show that the function [x], where [x] is the greatest integer not greater than x is Riemann integrable in [5] [0,3] and find $\int_0^3 [x] dx$.
- Q.4(a) If $u = \frac{x^3 y^3 z^3}{x^3 + y^3 + z^3} + \ln \frac{xy + yz + zx}{x^2 + y^2 + z^2}$, then find the value of $xu_x + yu_y + zu_z$. [5]
- Q.4(b) Find the maximum and minimum values, if exist, of the function $x^2y^3z^4$ where 2x + 3y + 4z = a, a > [5] 0.
- Q.5(a) Evaluate the integral $\int \int_R e^{-(x+2y)} dx \, dy$, where *R* is the region in the first quadrant in which $x \le y$. [5]
- Q.5(b) Apply triple integral to find the volume of the solid bounded by $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1.$ [5]

:::::18/07/2022:::::