BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:M BRANCH		2	
TIME: 2H	SUBJECT: EC558 MODERN OPTIMIZATION TECHNIQUES I FULL MARKS: 5	FULL MARKS: 50	
2. Atten 3. The n 4. Befor	TIONS: Juestion paper contains 5 questions of total 50 marks. Inpt all questions. Inissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question paper. s/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.		
Q.1(a) Q.1(b) Q.1(c)	Draw the flowchart of the binary Genetic Algorithm? Describe multi-objective and single-objective optimization problems. Explain the concept of weighted sum method to find the solution of unconstrained multi- objective optimization problem.	[3] [3] [5]	
Q.2(a) Q.2(b)	Explain the concept of duality in LPP. Write the dual of the following primal LPP problem	[3] [3]	

Maximize Z = 8x + 6ySubject to $4x + 2y \le 600$ $2x + 4y \le 480$ $x, y \ge 0$

- Q.3. A man goes to market to purchase buttons. He needs at least 20 large buttons and 30 small ^[5] buttons. The shopkeeper sells button in two forms (i) boxes and (ii) cards. A box contains 2 large and 5 small buttons and a card 10 large and 5 small buttons. Formulate this problem as LPP in which he should minimize the total cost if a box cost 10 paise and a card 25 paise only. Solve this problem by graphical method.
- Q.4(a) Explain the Lagrange multiplier method to find the solution to the two-variable optimization ^[5] problem with equality constraints.
- Q.4(b) Write the name of two indirect methods to find solution of unconstrained multivariable [2] nonlinear programming problem.
- Q.5(a) Write the names of indirect methods to find the solution of constrained multivariable nonlinear [2] programing problem. [4] [5]
- Q.5(b) Write the different basis to classify the optimization problem.

Q.5(c) Write the Gradient and Hessian matrix for the function $f(x) = x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 - 5x_2x_3$ Also find the directional derivative of the function at (1, 1, 1) in the direction d = [123]

- Q.6(a) What are the different techniques of the direct bracketing methods to find the optimal values of the [5] unimodal function?
- Q.6(b) Minimize $f(x) = (100 x)^2$ over the interval $60 \le x \le 150$ up to three stages using [5] interval halving method.

:::::06/05/2022 E:::::