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---------------------------------------------------------------------------------------------------------------------------------- 
Q.1 
 

The theorem which states least percentage of values that fall within standard deviations is classified 
as: 

(A) Gaussian theorem 
(B) Poisson theorem 
(C) Chebyshev’s theorem  
(D) None of these 

[1] 

   
Q.2 If 𝑋 and 𝑌 are independent random variables defined by probability density function (pdf) 𝑓 (𝑥, 𝑦), 

the pdf of 𝑍 = (𝑋 + 𝑌) is 
(A) 𝑓 (𝑥). 𝑓 (𝑦) 

(B) ∫ ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦 

(C) ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦  

(D)  
( , )

( ). ( )
 

[1] 
 
 
 
 

   
Q.3 If 𝜑 (𝜔) is the complex characteristic function of a random variable 𝑋, then the 𝑛  moment about 

origin 𝐸[𝑋 ] is given by 
(A) 𝐸[𝑋 ] = (𝑗) 𝜑 (0) 
(B) 𝐸[𝑋 ] = (𝑗) 𝜑 (𝜔) 

(C) 𝐸[𝑋 ] = 𝜑 (0)  

(D) 𝐸[𝑋 ] = 𝜑 (𝜔) 

[1] 
 
 
 
 

   
Q.4 The cross-correlation provides: 

(A) Information about the structure of only one signal 
(B) Information about the behavior of only one signal in the time domain 
(C) The measure of dissimilarities between two signals  
(D) The measure of similarities between two signals 

[1] 
 
 

   
Q.5 A random variable 𝑋 has a continuous uniform distribution over the interval (2, 6). The 𝑃[𝑋 ≤ 4] is 

(A) 0.3 
(B) 0.5 
(C) 1.33  
(D) None of these 

[1] 
 
 

   
Q.6 If 𝑋 represents the outcomes, when a fair dice is tossed, choose the correct answer from the given 

options. Here 𝐸[𝑋] is the mean value of 𝑋 and 𝑀 (𝑡) is the moment generating function (MGF) of 𝑋. 
(A) 𝐸[𝑋] = [𝑀 (𝑡)] = 91/6 

(B) 𝐸[𝑋] = [𝑀 (𝑡)] = 7/2 

(C) 𝐸[𝑋] = [𝑀 (𝑡)] = 7/2 

(D) None of these 

[1] 
 
 
 

   



Q.7 A sequence of random numbers can be termed convergence if  

(A) (𝑋 − 𝑋 ) is less than 𝜀, for all 𝑛 

(B) |𝑋 − 𝑋 | is less than 𝜀, for 𝑛 > some value 

(C) (𝑋 − 𝑋 ) is less than 𝜀 for 𝑛 > some value  

(D) (𝑋 − 𝑋 ) is zero for some value of 𝑛 

[1] 
 
 

   
Q.8 Which of the following distribution function(s) show(s) the memoryless property? 

(A) Exponential distribution  
(B) Gamma distribution 
(C) Poisson distribution  
(D) All the above 

[1] 
 
 

   
Q.9 If, P(A)=0.5, P(B)=0.3 and 𝑃(𝐴 ∩ 𝐵) = 0.15, then 𝑃((𝐴|𝐵) in a two-event space is 

(A)  0.15 
(B)  0.3 
(C)  0.5  
(D)  0.85 

[1] 
 
 

   
Q.10 Consider a pdf given by f(x) = k e-ax, 0 ≤ x≤ ∞. The P(x ≤ a) can be written as 

(A)   ≤ 1- 1/a2  
(B)   ≥ 1- 1/a2   
(C)   ≤ 1/a2   
(D)   ≥ 1/a2   

[1] 
 
 

   
Q.11 If 𝑓 (𝑥, 𝑦) = 𝑘 is the probability density function (pdf) of bivariate random variables for 0 ≤ 𝑥 ≤ 1, 0 ≤

𝑦 ≤ 1 and 0 otherwise, then 𝐸[𝑋𝑌 ] is 

(A) 1/6 
(B) 1/4 
(C) 1/3  
(D) 1/2 

[1] 
 
 
 

   
Q.12 For any random variable 𝑋, the value of 𝑎 for which the function 𝐸[(𝑋 − 𝑎) ] is minimum is 

(A) 𝑎 = 𝐸[𝑋] 
(B) 𝑎 = 𝐸[𝑋]/2 
(C) 𝑎 = 𝐸[𝑋 ]  
(D) 𝑎 = 𝐸[𝑋 ]/2 

[1] 
 
 

   
Q.13 If 𝑋 and 𝑌 are two random variables, then the variance of (𝑎𝑋 + 𝑏𝑌), where 𝑎 and 𝑏 are constants is 

(A) 𝑎𝑉𝑎𝑟[𝑋] + 𝑏𝑉𝑎𝑟[𝑌] − 𝑎𝑏𝐶𝑜𝑣[𝑋, 𝑌] 

(B) 𝑎 𝑉𝑎𝑟[𝑋] + 𝑏 𝑉𝑎𝑟[𝑌] − 2𝑎𝑏𝐶𝑜𝑣[𝑋, 𝑌] 

(C) 𝑎 𝑉𝑎𝑟[𝑋] + 𝑏 𝑉𝑎𝑟[𝑌] + 2𝑎𝑏𝐶𝑜𝑣[𝑋, 𝑌]  

(D) 𝑎𝑉𝑎𝑟[𝑋] + 𝑏𝑉𝑎𝑟[𝑌] + 𝑎𝑏𝐶𝑜𝑣[𝑋, 𝑌] 

[1] 
 
 

   
Q.14 There are 5 events whose values are {2, -5, 3, 6, -2} with respective probability value {0.1, 0.2, 0.3, 

0.2, 0.2}. The variance is 
(A) 15.29 
(B)  17.31 
(C)  27.12  
(D)  None of these 

[1] 
 
 
 

   
Q.15 Consider two random variables ‘𝑋’ and ‘𝑌’ with joint-characteristic function ∅ (𝜔 , 𝜔 ), then find 

joint p.d.f. 𝑓 (𝑥, 𝑦). 
(A)  ∫ ∫ ∅ (𝜔 , 𝜔 ) ∙ 𝑒 ( ) ∙ 𝑑𝜔 ∙ 𝑑𝜔  

(B)  
( )

∫ ∫ ∅ (𝜔 , 𝜔 ) ∙ 𝑒 ( ) ∙ 𝑑𝜔 ∙ 𝑑𝜔  

(C)  2𝜋 ∫ ∫ ∅ (𝜔 , 𝜔 ) ∙ 𝑒 ( ) ∙ 𝑑𝜔 ∙ 𝑑𝜔   

(D)  (2𝜋) ∫ ∫ ∅ (𝜔 , 𝜔 ) ∙ 𝑒 ( ) ∙ 𝑑𝜔 ∙ 𝑑𝜔  

[1] 
 
 
 
 
 



   
Q.16 A random process is called ‘white’ if the power spectral density is equals to 

(A) Symmetric and constant with frequency 
(B) Asymmetric and impulse with frequency 
(C) Symmetric and impulse with frequency  
(D) Asymmetric and constant with frequency 

[1] 
 
 

   
Q.17 The joint CDF of a two-dimensional random variable is 𝐹 (𝑥, 𝑦).  The 𝑃(𝑋 > 𝑎, 𝑌 > 𝑐) can be given by 

(A)  1 + 𝐹 (𝑎) + 𝐹 (𝑐) + 𝐹 (𝑎, 𝑐) 
(B)  1 + 𝐹 (𝑎) − 𝐹 (𝑐) − 𝐹 (𝑎, 𝑐) 
(C)  1 − 𝐹 (𝑎) − 𝐹 (𝑐) + 𝐹 (𝑎, 𝑐)  
(D)  1 − 𝐹 (𝑎) − 𝐹 (𝑐) − 𝐹 (𝑎, 𝑐)  

[1] 
 
 

   
Q.18 If A and B are two events making complete space, then 𝑃 �̅�

𝐵
 is 

(A)  
( ∪ )

( )
 

(B)  1 − 𝑃(�̅�
𝐵

) 

(C)  1 − 𝑃(𝐴
𝐵)  

(D)  None of the above 

[1] 
 
 
 

   
Q.19 Consider a probability space whose pdf is given by f(x) = k e-3x for x≥0, is equal to 0 otherwise. Find 

the mean of the random variables. 
(A) 3 
(B) 1/3 
(C) 1/6  
(D) 1/9 

[1] 
 
 
 

   
Q.20 For two events 𝐴 and 𝐵 of a two-event space,  𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵) is represented by 

(A) 𝑃(𝐴) 
(B) 𝑃(𝐵) 
(C) 𝑃(𝐴 ∪ 𝐵)  
(D) 𝑃(𝐴 ∩ 𝐵) 

[1] 
 
 

   
Q.21 A random variable 𝑋 has mean of 9 and variance of 3. Use Chebyshev’s inequality and find an upper 

bound for 𝑃(|𝑋 − 9| ≥ 3). 
(A) 1/2 
(B) 1/3 
(C) 2/3  
(D) 3/5 

[1] 
 
 

   
Q.22 Consider a Gaussian pdf with mean and standard deviation equal to 2 and √2 respectively.  

The P(|x-2| ≥ 0.001) can be written as  
(A)   ≤ 2000  
(B)   ≥ 2000   
(C)   ≤ 1414    
(D)   ≥ 1414 

[1] 
 
 
 

   
Q.23 When joint probability density function (pdf) of 𝑋 and 𝑌 is 𝑓 (𝑥, 𝑦), then cumulative distribution 

function (CDF) of 𝑧 = (𝑋 + 𝑌 ) can be given as 𝐹 (𝑧) equals to 

(A) ∫ ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦
( )

( )

√

√
 

(B) ∫ ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦
( )

( )

√  

(C) ∫ ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦
( )

( )

√

√
  

(D) ∫ ∫ 𝑓 (𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦
( )

( )
 

[1] 
 
 
 
 
 
 

   
Q.24 The auto-correlation function of a band-limited (𝐵 𝐻𝑧) white-noise process is given by: 

(A) 𝑅(𝜏) = 𝐵. 𝑁 . 𝐿𝑛(2𝐵𝜏) 

(B) 𝑅(𝜏) = 𝐵. 𝑁 . 𝜏 . sin(2𝐵) 

[1] 
 
 
 



(C) 𝑅(𝜏) = 𝐵. 𝑁 . 𝐿𝑜𝑔(2𝐵𝜏)  

(D) 𝑅(𝜏) = 𝐵. 𝑁 . sinc(2𝐵𝜏) 

   
Q.25 If ‘A’ and ‘B’ represents space of two events, then the probability that exactly one of them occurs 

is 
(A)  𝑃(𝐴) + 𝑃(𝐵) 
(B)  𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 
(C)  𝑃(𝐴) + 𝑃(𝐵) − 2𝑃(𝐴 ∩ 𝐵)  
(D)  𝑃(�̅�) + 𝑃(𝐵) 

[1] 
 
 
 

   
Q.26 The auto-correlation function of a wide-sense stationary random process is given as 𝑒 | |. Find the 

peak value of the spectral density. 
(A) 1 
(B) 2 
(C) 𝑒  
(D) 𝑒 /  

[1] 
 
 
 

   
Q.27 Let 𝑋 is a random variable and 𝐵 is the conditioning event defined as 𝐵 = (𝑋 ≤ 𝑏), where 𝑏 is some 

real number −∞ < 𝑏 < ∞, also 𝐹 (𝑥) and 𝑓 (𝑥) denote cumulative distribution function (CDF) and 
probability distribution function (pdf) of 𝑋 respectively, then conditional density function 𝑓 (𝑥|𝑋 ≤ 𝑏) 
for 𝑋 < 𝑏 is 

(A) 
( )

∫ ( ).
 

(B) 
( )

∫ ( ).
 

(C) 
( )

∫ ( ).
  

(D) 
( )

∫ ( ).
 

[1] 
 
 
 
 

   
Q.28 Tickets numbered 1 to 20 are mixed-up and then a ticket is drawn at random. Find the probability 

that the ticket drawn has a number which is a multiple of 5. 
(A) 1/4 
(B) 1/5 
(C) 8/15  
(D) 9/20 

[1] 
 
 

   
Q.29 If 𝑋 be the sum of N uncorrelated random variables, the covariance 𝐶  of 𝑋  can be given for large 

N by 
(A) 𝜎 ; 𝑓𝑜𝑟 𝑖 = 𝑗 

(B) 𝑁𝜎 ; 𝑓𝑜𝑟 𝑖 = 𝑗 

(C) ; 𝑓𝑜𝑟 𝑖 = 𝑗  

(D) ; 𝑓𝑜𝑟 𝑖 = 𝑗 

[1] 
 
 
 
 
 

   
Q.30 If the co-variance of two random variables 𝑋 and 𝑌 is 𝐶 , find their correlation coefficient 𝜌 . 

(A) 𝐿𝑛[𝐶 ] 

(B) 𝐿𝑛
.

 

(C)  
.

  

(D)  
.

 

[1] 
 
 
 
 



   
Q.31 State and explain Bayes’ Rule for probability. [2] 
   
Q.32 In a class, 60% of the students are boys and the remaining are girls. It is known that the probability 

of a boy getting distinction is 0.30 and that of girl getting distinction is 0.35. Find the probability that 
a student chosen at random will get distinction? 

[2] 

   
Q.33 Define moment generating function (MGF) of ensemble of random variables with an example. [2] 
   
Q.34 For a Binomial distribution mean is 6 and standard deviation is √2. Find the probability for one 

success.   
[2] 

   
Q.35 For a bivariate probability density function (pdf), write expressions for the third moment. [2] 
   
Q.36 Statistically independent random variables 𝑋 and 𝑌 have joint moments as, 𝑚 = 2, 𝑚 = 16, 𝑚 =

30 and 𝑚 = −10. Find variance of 𝑋 and 𝑌. 
[2] 

   
Q.37 State and prove Markov’s inequality theorem. [2] 
   
Q.38 Verify, if there exist a variate 𝑋 for which 𝑃[𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎] = 0.6. Use Chebyshev’s 

inequality. 
[2] 

   
Q.39 Explain wide sense stationary (WSS) random process. [2] 
   
Q.40 A wide sense stationary process 𝑋(𝑡) has power spectrum 𝑆 (𝜔) = . Find the average power of 

𝑋(𝑡). 

[2] 
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