BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.Tech : Information Security	SEMESTER : II SESSION : SP/22	
SUBJECT: CS602 DATA COMPRESSION			
TIME: 2.00 Hrs		FULL MARKS: 50	
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	What is Data Compression? Why we need it? Explain Compression and Reconstruct with the help of block diagram.	tion [C1]	[5]
Q.1(b)	Design a minimum variance Huffman code for a source that put out letter from an $A=\{a1,a2,a3,a4,a5\}$ with $P(a1) = 0.2$, $P(a2) = 0.4$, $P(a3) = 0.2$, $P(a4) = 0.1$, $P(a5) =$ Find the entropy of the source, average length of the code and the efficiency.		[5]
Q.2(a) Q.2(b)	Give LZ77 approach for adaptive dictionary-based encoding with example. [C1] Explain the encoding and decoding process of LZW approach for the string. [C4] "a#bar#array#by#barrayar#bay"		[5] [5]
Q.3(a)	What is Adaptive Quantization? Explain the various approaches to adapting the quaparameters.	antizer [C2]	[5]
Q.3(b)	Explain step by step algorithm for image compression using RLE algorithm. [C5]		[5]
Q.4(a) Q.4(b)	Explain the concept of quantization in lossy compression with the help of an exam What do you mean be codebook of a quantizer? How Lindo Buzo Gray algorithm is for a higher dimensional quantizer explain.		[5] [5]
Q.5(a) Q.5(b)	Explain the steps involved in video compression. [C3] Construct Shannon-Fano code using given set of messages. Also calculate Entropy, Average, Efficiency and Redundancy Message X = [x1, x2, x3, x4, x5, x6, x7, x8] Probability P = [1/4, 1/8, 1/16, 1/16, 1/16, 1/4, 1/16, 1/8]	Length [C3]	[5] [5]

:::::29/04/2022 E:::::