$\begin{array}{lc}\text { CLASS: } & \text { MTECH } \\ \text { BRANCH: } & \text { CS \& IT }\end{array}$

TIME: 2hrs

SEMESTER : II
SESSION : SP/22

SUBJECT: CS601 - GRAPH THEORY

FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 13 questions each of 5 marks and total 65 marks.
2. Candidates may attempt any 10 questions maximum of 50 marks.
3. The missing data, if any, may be assumed suitably.
Q. 1 Show that the maximum number of edges in a simple graph with n vertices is $n(n-1) / 2$.
Q. 2 Discuss whether the following graphs are Hamiltonian and/or Eulerian. Show the Hamiltonian circuit or path - if exists. Check whether the graph is arbitrarily traceable or not.

Figure 1
Q. 3 Define spanning tree. Show that a Hamiltonian path is a spanning tree.
Q. 4 Can you construct the graph if you are given all its spanning trees? Explain with example. [5]
Q. 5 Find all possible un-labelled trees for $\mathrm{n}=6$?
Q. 6 Draw an isomorphic graph of the graph given in Figure 1. Then prove that your graph is isomorphic to this graph.
Q. 7 Find the Dual of the graph in Figure 1.
Q. 8 Find the fundamental cutset matrix of the graph in Figure 1 and represent the matrix using [5]
identity matrix.
Q. 9 What are the set of information represented by the value of an off-diagonal entry and diagonal entry of the square of an adjacency matrix.
Q. 10 Explain with suitable example: Euler digraph or 2-isomorphism.
Q. 11 Minimize the following Boolean function using graph covering: (X ' denotes: not X)
$A B C^{\prime} D^{\prime}+A B C^{\prime} D+A B^{\prime} C^{\prime} D+A B C D+A B^{\prime} C D+A B C D^{\prime}+A B^{\prime} C D^{\prime}$
Q. 12 Prove: the vertices of every planar graph can be properly colored with 5 colours.
Q. 13 What do you mean by Uniquely Colorable Graphs? Find a graph that is uniquely colorable. Also find a graph that is not uniquely colorable. Explain.

