BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	MSc.		SEMESTER: IV
BRANCH:	Chemistry		SESSION: SP/22
		SUBJECT: CH514 Chemical Applications of Group Theory	
TIME:	2 Hours		FULL MARKS: 50
INSTRUCT 1. The quest		ns 5 questions each of 10 marks and total 50 marks.	
2. Attempt a	all questions.	-	
3. The missi	ing data, if any, m	ay be assumed suitably.	
4. Before att	tempting the ques	tion paper, be sure that you have got the correct question paper.	
		aph paper etc. to be supplied to the candidates in the examination hall.	

Q.1(a) Use the 3N Cartesian basis and the appropriate Character table to determine the symmetries of vibrational modes [5] of H₂O.

C 21	E	<i>C</i> ₂	$\sigma_r(xz)$	σ' _e ():z)		
$ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \end{array} $	1	I	1	1	z	x^2, y^2, z^2
A2	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R_r	xz
B 2	1	-1	-1	1	R_z x, R_y y, R_x)'Z

Q.1(b) Express the symmetry coordinates as SALCs of the internal coordinates in the case of H_2O .

Q.2(a) Show the SALC of π -orbitals of ethylene.

D_{2h}	Ε	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$		
A_{g}	1	1	1	1	1	1	1	1	1	x^2, y^2, z^2
B_{1g}	1	1	- 1	- 1	1	1	-1	-1	R_z	xy
B_{2g}	1	-1	1	-1	1	-1	1	-1	R_y	xz
B_{3g}	1	-1	-1	1	1	-1	-1	1	R _x	yz
A_{u}	1	1	1	1	-1	-1	1	-1		
B_{1u}	1	1	-1	-1	-1	-1	1	1	Z	
B ₂	1	- 1	1	-1	- 1	1	-1	1	y	
B 3 11	1	-1	-1	1	-1	1	1	-1	x	

- Q.2(b) Using HMO approach form the secular determinant of π -orbitals of ethylene and calculate the energy of π -bonding [5] and anti-bonding orbitals.
- Q.3(a) Show that the symmetry representation of σ -MOs in H₂O. [5]
- Q.3(b) Determine the symmetry representation of hybrid orbitals in boron in BF_3 . [5]

D _{3h}	E	$2C_{3}$	3C ₂	σ_h	$2S_{3}$	$3\sigma_v$		
$\overline{A_1}'$	1	1	1	1	1	1	$\begin{array}{c} R_z \\ (x, y) \end{array}$	$x^2 + y^2, z^2$
$A_1' \\ A_2'$	1	1	-1	1	1	-1	Rz	
Ē	2	- 1	0	2	1	0	(x, y)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	1		
A_2''	1	1	-1	-1	-1	1	z	
A_2'' E''	2	- 1	0	-2	1	0	$\begin{bmatrix} z \\ (R_x, R_y) \end{bmatrix}$	(xz, yz)

Q.4(a) Explain the concept of vibronic coupling.

Q.4(b) Explain how and why splitting of d orbital energy levels happen in the presence of an Octahedral crystal field. [5]

Q.5(a)Draw all the seven three-dimensional unit cell with the lattice parameters.[5]Q.5(b)Why is 5-fold rotational axis not observed in crystal symmetry?[5]

:::::25/04/2022:::::

[5]

[5]

[5]