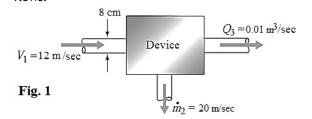
## BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B.TECH SEMESTER: IV
BRANCH: MECHANICAL SESSION: SP/2020

## SUBJECT: ME251 THERMO FLUID ENGINEERING

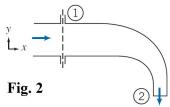

TIME: 2 HOURS FULL MARKS: 25

## **INSTRUCTIONS:**

- 1. The total marks of the questions are 25.
- 2. Candidates may attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.

------

| Q1<br>Q1 | (a)<br>(b) | Define clearly the local and convective acceleration with examples.  Derive an expression for the material derivative and explain clearly the physical interpretation of each term. | [2]<br>[3] | CO<br>1<br>1 | BL<br>1<br>2,<br>6 |
|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------------|
| Q2       | (a)        | Water flows out of the device as shown in Fig. 1. Calculate the rate of change of the mass of water (dm/dt) in the device.                                                          | [2]        | 1            | 3                  |
| Q2       | (b)        | Determine the conservation of mass from the Reynolds transport theorem and discuss the special cases in context to the compressible and incompressible flows.                       | [3]        | 1            | 3                  |




- Q3 (a) Derive an expression for the volumetric dilatation rate and explain its [2] 2 significance.
- Q3 (b) With a neat sketch, derive an expression for the angular motion and [3] 2 6 deformation of a differential fluid element.
- Q4 In the case of rectangular parallelepiped, how would you derive the relation [5] 2 6 for the rate of shearing strains.

3

3

Q5 Water flows steadily through the 90° reducing elbow shown in Fig. 2. At the [5] inlet to the elbow, the absolute pressure is 220 kPa and the cross-sectional area is 0.01 m². At the outlet, the cross-sectional area is 0.0025 m² and the velocity is 16 m/s. The elbow discharges to the atmosphere. Calculate the force required to hold the elbow in place.

