BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: IT SEMESTER: VI SESSION : SP/2020

SUBJECT : IT6021 COMMUNICATION THEORY

тімі	E:	1.5	HOURS	FULL MARKS:	25
1. T 2. C 3. In 4. B	he t andi n tho efor	dates i se case e atter	S: arks of the questions are 30. may attempt for all 30 marks. es where the marks obtained exceed 25 marks, the excess will be igr mpting the question paper, be sure that you have got the correct que data, if any, may be assumed suitably.		
		Define	are the sufficient conditions for signal to be Fourier transformable? e energy and power of a signal. Evaluate the energy of an exponentia e ^{-at} u(t).	al pulse	[2] [3]
			e unit impulse function and find its Fourier transform. the property of Fourier transform to obtain the spectrum of RF pulse	e and plot it.	[2] [3]
	(a) (b)	and fr Derive	the expression for single tone amplitude modulated signal and draw it requency domain waveforms. e the relationship between carrier power and total power for AM wa , maximum average power transmitted by an antenna is 1.5 times the	ve. Prove that	[2] [3]
-	. ,	provic How t effect	ibe Costas receiver for demodulating DSBSC signal and explain how pl ded in this. the SSB signal is demodulated by using a Coherent demodulator. I t of error on demodulation. What will be the effect of this error if the place of SSB?	Determine the	[2] [3]
		Derive	Carlson's rule to determine the transmission bandwidth of FM wave. e an expression for single tone narrowband frequency modulated w modulator.	ave and draw	[2] [3]
		2.4 v modul voltag	the modulating frequency in an FM system is 400 Hz and the modula , the modulation index is 60. Calculate the maximum deviation. lation index when modulating frequency is reduced to 250 Hz and the ge is simultaneously raised to 3.2 v.	What is the modulating	[2]
	(D)	Comp	are Amplitude Modulation and Angle Modulation with their application	ons.	[3]

:::::: 26/02/2020 ::::::M