BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH BRANCH: EEE

SUBJECT: EE253 ENGINEERING ELECTROMAGNETICS

TIME: 2 HOURS

FULL MARKS: 25

SEMESTER: IV

SESSION: SP/2020

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates may attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1	(a)	Calculate $\nabla \cdot D$ at the point specified if $D = 2r \sin\theta \sin\varphi ar + r \cos\theta \sin\varphi a\theta + r$	[2]	CO C02	BL BL3
Q1	(b)	$\cos \varphi a\varphi at P(3, 45^{\circ}, -45^{\circ})$ For a continuous charge distribution ρ derive the equation of electrostatic energy density $w_e = \frac{1}{2} D.E$?	[3]	C01	BL2
Q2	(a)	Write the boundary conditions for the tangential and normal components of D at an interface between two perfect dielectric media with dielectric constants ε_{r1}	[2]	C01	BL2
Q2	(b)	And e ₁₂ . Assume that $z = 0$ plane separates two lossless dielectric regions with $\varepsilon_{r1} = 2$ and $\varepsilon_{r2} = 3$ If we know that E_1 in the region 1 is $a_x 2y - a_y 3x + a_z (5+z)$ what do we also know about E and D in region 2? Can we determine E and D at any point in region 2? Explain.	[3]	C04	BL4
Q3	(a)	Obtain the relation between vector magnetic potential A and magnetic flux ø	[2]	C01	BL2
Q3	(b)	Determine the Magnetic field intensity at a point P(3,6,8) in a medium having relative permeability of 5 for a given magnetic potential vector $(3x+2z^2)a_x + x^3y^2/z a_y + (z-7x) a_z$?	[3]	C02	BL3
Q4	(a)	Show that E field caused by spherical cloud of electrons outside its radius	[2]	C01	BL2
Q4	(b)	Obtain the solution of Laplace equation by method of separation of variables in Cartesian coordinate system?	[3]	C02	BL3
Q5	(a)	Write the Maxwell's equations in differential and integral form for time varying fields with their significance?	[2]	C01	BL1
Q5	(b)	Express the poissons equation in all types of three dimensional coordinate systems?	[3]	C01	BL1

:::: 02/03/2020E ::::::