BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS BRANC	5: BTECH CH: CSE/IT		SEMESTER: IV SESSION: SP/2020		
	SUBJECT: CS	206 DESIGN AND ANALYSIS OF ALGORITHM			
TIME:	2 HOURS	F	ULL MA	RKS: 2	25
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates may attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q1 (a)	For any two functions $F(n)$ and and $f(n) = o(g(n))$ and vice vers	$f(n)$, show that if $f(n)=\Theta(g(n)$ then $f(n)=O(g(n))$	[2]	CO 1	BL 3
Q1 (b)	Show that the sequence {(1+(1	I/n)) ⁿ } is increasing and bounded by 4.	[3]	1	3
Q2 (a) Q2 (b)	Solve the Recurrence T(n)= T(Show that lg n! = Θ (n lgn)	9n/10) + n	[2] [3]	2 2	6 5
Q3 (a)	Professor BIT proposes the foll bsearch(L,i,j,key) { if(i>j) return -1 k=(i+j)/2 if(key==L[k]) return k if(key <l[k]) return bsearch(L,i,k,key) else</l[k]) 	lowing version of binary search	[2]	3	3
Q3 (b)	return bsearch(L,k+1,j,key) Is the Professor's version correcomplexity accordingly? What is a selection problem? I will take the input and provide follow for this design.	} ect? Justify your answer and find it's time Design the selection problem. Hint: How machine e output. Which conventional design strategy you	[3]	3	6
Q4 (a)	An n element array contains o	nly the numbers 0,1,2. Write an O(n)	[2]	4	6
Q4 (b)	algorithm/procedure/program Write an algorithm for Quickso an example.	or to sort the humbers. Fort and analysis it's time complexity. Explain with	[3]	4	6
Q5 (a)	Show how Strassen's' algorithm $\begin{pmatrix} 3 & 1 \\ 4 & -5 \end{pmatrix}$	m computes	[2]	5	4
Q5 (b)	Write a non-recursive version you can.	of merge sort. Make your algorithm as efficient as	; [3]	5	6

:::: 02/03/2020E ::::::