BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TechSEMESTER : III: AMSSESSION : SP/19							
	SUBJECT: PE510 ROBOTICS AND ROBOT APPLICATION							
TIME:	3 Hours FULL MARKS: 50)						
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 								
Q.1(a) Q.1(b)	Describe the five basic robot configurations. Discuss the four type of power sources used in robot and compare their advantages and disadvantages according to economics, reliability, and load-carrying ability.	[5] [5]						
Q.2(a)	Explain the different types of mechanism used in mechanical gripper	[5]						

- Q.2(b) Describe the four different types of photoelectric sensors.
- Q.3(a) Fig. a shows a 2-DOF planar elbow-arm, sometimes called as R-R manipulator. The non-zero link [5] and joint parameters are: $a_1 = 6$, $a_2 = 9$, $\theta_1 = 60^\circ$ and $\theta_2 = 45^\circ$. Obtain the transformation matrices and find the solution for the direct kinematics problem.

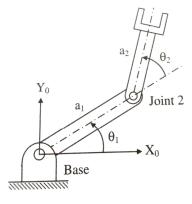


Fig. a

Q.3(b) The position and orientation of a robot arm is represented by the matrix $\begin{vmatrix} 0.527 & -0.574 & 0.628 & 6 \end{vmatrix}$

0.527 -0.574 0.628 6 0.369 0.819 0.439 4 -0.766 0 0.643 6 0 0 0 1

has been moved 6 units along the x-axis and 4 units along z-axis. Find the final position and orientation of the robot arm.

Q.4(a) D-H parameters of R-P-R arm are given in table below. Obtain the Jacobian matrix relating the [5] velocity of end-effector with joint velocities $[\dot{\theta}_1 \ \dot{d}_2 \ \dot{\theta}_3]^T$. If $\theta_1 = 30^\circ$, $d_2 = 0.5$ m and $\theta_3 = -75^\circ$, what are linear and angular velocity of end-effector. Given joint actuation speeds as: 10°/sec, 0.3m/sec and -3.5°/sec respectively.

Link	d	a	α	θ
1	0.5	0	90°	θ_1
2	d ₂	1	0	0
3	0	0.2	90°	θ_3

[5]

[5]

- Q.4(b) Describe the Lagrangian formulation of manipulator dynamics.
- Q.5(a) In a pallet object 40 mm height are located in a number of rows and columns. The pallet has three [5] rows that are 30 mm apart and 4 columns that are 50 mm apart. The plane of the pallet is assumed to parallel to x-y plane. The objects are to be picked up one after another from the pallet and placed in a location chute. Write VAL program for this operation.
- Q.5(b) Explain the selection criteria and advantage of using robot in the following manufacturing [5] operations:
 - I. Machining
 - II. Welding
 - III. Assembly

:::::24/04/2019 M:::::

[5]