BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MBA I: MANAGEMENT	SEMESTER: II SESSION: SP/19	
	SUBJECT: MT412 OPERATIONS RESEARCH		
TIME:	FULL MARKS: 50)	
INSTRUE 1. The o 2. Atter 3. The o 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. mpt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question pa es/Data hand book/Graph paper etc. to be supplied to the candidates in the examina	aper. ation hall.	
Q.1(a) Q.1(b)	Explain how and why operations research methods have been valuable in aiding execu Explain the different types of models used in operation research.	tive decisions.	[5] [5]
Q.2(a)	Use the graphical method to solve the following LP problem Minimize: $Z = 20x_1 + 10x_2$ Subject to constraints $x_1 + 2x_2 \le 40$ $3x_1 + x_2 \ge 30$ $4x_1 + 3x_2 \ge 60$ $x_1, x_2 \ge 0$		[5]
Q.2(b)	Use the Big - M method to solve the following LP problem Minimize: $Z = 5x_1 + 3x_2$ Subject to constraints $2x_1 + 4x_2 \le 12$ $2x_1 + 2x_2 = 10$ $5x_1 + 2x_2 \ge 10$ $x_1, x_2 \ge 0$		[5]

Q.3(a) A manufacturer wants to ship 22 loads of his product as shown below. The matrix gives the kilometre [5] from sources of supply to the destination.

				Destination							
				← →	→						
		D ₁	D ₂	D ₃	D ₄	D ₅	Supply				
T	S ₁	5	8	6	6	3	8				
Source	S ₂	4	7	7	6	5	5				
	S ₃	8	4	6	6	4	9				
•	Demand	4	4	5	4	8	22				
							25				

Shipping cost is Rs. 10 per load per kilometres. What shipping schedule should be used to minimise total transportation cost?

Q.3(b) A department has five employees with five jobs to be performed. The time (in hours) each men will [5] tape to perform each job is given in the effectiveness matrix.

Employees								
		II		IV	V			
Α	10	5	13	15	16			
В	3	9	18	13	6			
С	10	7	2	2	2			
D	7	11	9	7	12			
E	7	9	10	4	12			

How should the jobs be allocated so as to minimise the total man hours?

Q.4(a) Explain the following terms:

(i) Minimax and Maximin principles (game theory)

Q.4(b) Solve the game whose payoff matrix is given below:

(ii) Mixed strategies in game theory

[5] [5]

Player A	B ₁	B ₂	B ₃	B ₄
A ₁	3	2	4	0
A ₂	3	4	2	4
A ₃	4	2	4	0
A_4	0	4	0	8

- Q.5(a) What is replacement? Describe some important replacement situations.
- Q.5(b) A firm is considering replacement of a machine, whose cost price is Rs. 12,200 and the scrap value Rs. [9] 200. The running (Maintenance and operating) costs are found from experience to be as follows.

	Year	1	2	3	4	5	6	7	8	
	Running cost (Rs.)	200	500	800	1200	1800	2500	3200	4000	
on ch	on should be maching be replaced?									

When should be machine be replaced?

:::::29/04/2019 M:::::

[5] [5]