

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION)
CLASS: MCA SEMESTER : IV
BRANCH: MCA SESSION : SP/19

SUBJECT: MCA4001 COMPILER DESIGN

TIME: 3 Hours FULL MARKS: 60

INSTRUCTIONS:
1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
--

Q.1(a) Differentiate between compiler and interpreter. Explain the need for dividing the compilation process

into various phases and discuss each of the phases.
[8]

Q.1(b) What is a pass in a compiler? What is the effect of reducing the number of passes? [4]

Q.2(a) Define parsing. Explain why do we often prefer ambiguous grammar for designing parser. Discuss briefly
the difficulties in Top-down parsing.

[6]

Q.2(b) Design LL(1) parser for the grammar having productions: S (S)S | ε(null). Check whether the given

grammar is LL(1) or not from the constructed LL(1) table.

[6]

Q.3(a) What is shift-reduce parser? Define handle. Give a suitable example. Explain the conflicts that may

occur during shift-reduce parsing.
[6]

Q.3(b) Differentiate between LL(k) and LR(k) parsers, where k denotes the number of look-ahead tokens. Can
you consider k=0 for LL(k)? If so, how does the parser work? Explain why LR parsing is attractive

[6]

Q.4(a) Define inherited and synthesized attributes. Give example for each. [5]
Q.4(b) Write an L-attributed SDD for type declaration for list of identifiers (in C-language). Show the annotated

parse tree for the sentence: float x, y, z;
[7]

Q.5(a) What is the need of intermediate code? List out the types of Intermediated codes. Differentiate

between concrete syntax tree and abstract syntax tree.
[6]

Q.5(b) Construct DAG and QUADRUPLE representation for : a+a*(b-c)+(b-c)*d. [6]

Q.6(a) Explain why code optimization is called optional phase. What happened if we do not optimize code? If
we optimize code, what will be the issues associated with the optimization? What are the principle
sources of optimization? Explain with examples.

[6]

Q.6(b) What is a basic block? Write an algorithm for partitioning a sequence of TAC statements into basic
blocks.

[6]

Q.7(a) Explain error detection and error recovery strategy on Predictive parsing. [7]
Q.7(b) Explain the dynamic storage allocation strategies in detail. [5]

:::::24/04/2019 M:::::

