CLASS: BRANCH	BE : IT	BIRLA IN		ECHNOLOGY, ME ER EXAMINATIO		SEMESTER :VI SESSION : SP/19	
TIME:	3.00 Hrs.	20R1	ECT: 116027-0	PTIMIZATION TE	CHNIQUES	FULL MARKS: 60	
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 							
Q.1 Solve the following LPP by using simplex method							[12]
		$Z = 5x_1 + 3x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$	2				
	and	$3x_1 + 8x_2 \le 12$ $x_1, x_2 \ge 1$	-				
Q.2	Minimize $Z = x_1 + x_2$ Subject to $2x_1 + 4x_2 \ge 4$						[12]
	and	$x_1 + 7x_2 \ge 7$ $x_1, x_2 \ge 0$	/				
Q.3	Apply revised simplex method to solve Maximize $Z = x_1 + x_2 + 3x_3$ Subject to $3x_1 + 2x_2 + x_3 \le 3$ $2x_1 + x_2 + 2x_3 \le 2$ and $x_1, x_2, x_3 \ge 0$						[12]
Q.4(a)	State principle of optimality and use it to solveMinimize $Z = y_1^2 + y_2^2 + y_3^2$ Subject to $y_1 + y_2 + y_3 \ge 12$						[6]
Q.4(b)	and $y_1, y_2, y_3 \ge 0$						[6]
	Course Study days	X	Y	Z			
	0	1	2	1			
	1	2	2	2	_		
	2	2	4	4	-		
	3	4	5	4	_		
0.5	approach.				_ If his grades. Use dyna		[40]
Q.5			gramming prob	olem by using bra	anch and bound metho	00.	[12]

Q.5 Solve the following integer programming problem by using branch and bound method. [Maximize $Z = 6x_1 + 8x_2$ Subject to $4x_1 + 16x_2 \le 32$

and

- Q.6(a) Find Kuhn- Tucker's necessary conditions for solving maximizing a non-linear function subject to some [6] constraints.
- Q.6(b) Maximize $Z = (200x_1 2x_1^2) + (500x_2 3x_2^2)$ [6] Subject to $2x_1 + x_2 \le 140$ $2x_1 + 3x_2 \le 180$ And $x_1, x_2 \ge 0$

when all lagrange's multipliers are equal and not equal to zero respectively.

Q.7(a) Discuss birth-death process respect to queuing theory.

[8]

- Q.7(b) In a railway marshalling yard, good trains arrive at a rate of 45 trains per day. Assuming that both the inter-arrival time and the service-time with an average of 36 minutes follow an exponential [4] distributions, calculate
 - (i) the mean queue size
 - (ii) the probability that the queue size exceeds 10

:::::26/04/2019 E:::::