BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS: BE
BRANCH: IT
SEMESTER: VI
SESSION : SP/2019
SUBJECT : IT6027 OPTIMIZATION TECHNIQUES

TIME: 1.5 HOURS

FULL MARKS: 25
INSTRUCTIONS:

1. The total marks of the questions are 30.
2. Candidates may attempt for all 30 marks.
3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. The missing data, if any, may be assumed suitably.

Q1 (a) Define LPP and also give its vector representation.
(b) Put the following problem in standard form. What do you mean by basic feasible solution?
Maximize $Z=2 x_{1}-3 x_{2}+4 x_{3}$
Subject to

$$
x_{1}+2 x_{2}+x_{3} \leq 8
$$

$2 x_{1}-x_{2}+x_{3} \geq 2$
$4 x_{1}-2 x_{2}-3 x_{3}=-6$
$x_{1}, x_{2} \geq 0$ and x_{3} is unrestricted in sign.
Q2 (a) Maximize the objective function
Subject to

$$
Z=2 x_{1}+3 x_{2}
$$

$$
\begin{array}{ll}
& x_{1}+x_{2} \leq 1 \\
& 3 x_{1}+x_{2} \leq 4 \\
\text { and } \quad & x_{1}, x_{2} \geq 0
\end{array}
$$

by using graphical method.
(b) Find the set of solutions to

Minimize	$Z=3 x_{1}+2 x_{2}-5 x_{3}$
and maximize	$Z=2 x_{1}+3 x_{2}+x_{3}$

respectively,
subject to the constraints $\quad x_{1}+3 x_{2}+2 x_{3}=8$
$2 x_{1}+2 x_{2}+x_{3}=5$
and $\quad x_{1}, x_{2}, x_{3} \geq 0$.
Q3 Maximize $Z=7 x_{1}+12 x_{2}+16 x_{3}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}+x_{4}=1 \\
& x_{1}+2 x_{2}+4 x_{3}+x_{5}=2
\end{aligned}
$$

and $\quad x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$.
Maximize $\quad Z=x_{1}-x_{2}+2 x_{3}$
Subject to $\quad x_{1}-x_{2}+4 x_{3} \geq 2$
$-3 x_{1}+x_{2}+x_{3} \leq 8$
$-x_{1}+3 x_{2}+2 x_{3} \geq 4$
and $x_{1}, x_{2}, x_{3} \geq 0$.

Q5 Use duality to solve the problem
Maximize $\quad Z=-2 x_{1}+3 x_{2}$
Subject to $\quad x_{1} \leq 6$
$x_{2} \leq 4$
$x_{1}+x_{2} \leq 5$
$\mathrm{x}_{1} \geq 1$
and $x_{1}, x_{2} \geq 0$

