BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE I: IT	())))))))))	SEMESTER : VI SESSION : SP/19	
		SUBJECT: IT6021 COMMUNICATION THEOR	Y	
TIME:	3.00 Hrs.		FULL MARKS: 60	
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contain idates may attempt an nissing data, if any, ma re attempting the ques es/Data hand book/Grap	s 7 questions each of 12 marks and total 84 m y 5 questions maximum of 60 marks. ay be assumed suitably. tion paper, be sure that you have got the cor ph paper etc. to be supplied to the candidates	narks. rect question paper. s in the examination hall.	
0.4(=)				[2]
Q.1(a) Q.1(b)	 State the two convolution theorems of Fourier transform and prove that the multiplication of two signa in time domain is equivalent to convolution of their frequency transforms. 		t the multiplication of two signals orms.	[2] [4]
Q.1(c)	Explain time shifting an of damped sinusoidal w $g(t) = exp(-t)sin(2\pi f_c t)$	Id frequency shifting property of Fourier transfo vaveform defined as: u(t)	rm and find the Fourier transform	[6]
Q.2(a)	Define transmission eff	iciency. What is its maximum value for AM?		[2]
Q.2(b) Q.2(c)	Explain the working principle of switching modulator. Discuss the advantages of SSB-SC over AM. How signal transmission takes place for long distance if carrier is suppressed in it? Also obtain the expression for the SSB-SC modulated wave when only USB is transmitted and plot its spectrum.		[4] [6]	
Q.3(a)	An unmodulated carrie	er frequency is given by 1MHz. After frequency	modulation maximum frequency	[2]
Q.3(b) Q.3(c)	Explain the Armstrong What are different met diagram and equations	method for generation of wideband FM. thods of FM demodulation? Explain Phase Loch I in detail.	y. Loop (PLL) With the help of block	[4] [6]
Q.4(a) Q.4(b) Q.4(c)	Describe the multiplex Classify digital multiple Discuss the advantage principle of Frequency	ing hierarchy for digital multiplexing. exers and explain Synchronous time division mu is and disadvantages of FDM. With the help Division Multiplexing (FDM).	Iltiplexing. of block schematic, explain the	[2] [4] [6]
Q.5(a)	For a superheterodyne circuit is 100. Now if in rejection ratio at an in	AM receiver having no RF amplifier, the load ntermediate frequency is 455 KHz , then deterr	led Q-factor of antenna coupling nine the image frequency and its	[2]
Q.5(b) Q.5(c)	Explain the salient feat Draw the block diagram	ture of broadcast radio receivers. n of superheterodyne receivers and explain the	function of each block.	[4] [6]
Q.6(a)	Define correlation and	covariance and State the condition for two ra	andom variables to be orthogonal	[2]
Q.6(b) Q.6(c)	Define CDF and pdf of Define ergodic random $X(t) = A \cos(\omega t + \theta)$ wh is ergodic in both mean	a random variable and write their various proper process. Consider a random process X(t) given ere, A and ω are constants and θ is random var n and autocorrelation.	erties. by: iable over [-π, π].Show that X(t)	[4] [6]
Q.7(a) Q.7(b)	Define thermal noise a Two resistors 20 k Ω an	nd shot noise. d 50 k Ω are at room temperature (290° K). Det	termine for the bandwidth of 100	[2] [4]
Q.7(c)	Explain noise factor a connected in cascade.	nor two resistors in series and for two resistors and noise figure. Derive the expression for or	verall noise factor of amplifiers	[6]

:::::22/04/2019 E:::::