BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BE SEMESTER: IV SESSION: SP/19

SUBJECT: IT4025 THEORY OF COMPUTATION

TIME: 3.00 Hrs. FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

.....

Q.1(a) Q.1(b) Q.1(c)	Why we study Non-Deterministic Finite Automata? Give two lines justification. How Finite Automat is applicable in Software Design? Explain briefly. Design a Deterministic Finite Automata (DFA) to recognize strings of $\Sigma = \{a,b,c\}$ that contain exactly one 'a' and one 'b' in its first three places.	[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	In two lines write differences between two finite automata with output. How a Mealy machine can be converted into a Moore machine? Explain process with suitable example. Design a Mealy machine that reads a string of '0' and '1' and convert them into a string of 'a' and 'b' with following rules: i. Every second '0' will be converted into 'a' ii. Every third '1' will be converted into 'a' iii. Remaining all '0' and '1' will be converted into 'b'	[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Write relation between Regular Expression and Finite Automata in two lines. Design a DFA to recognize string of $\Sigma = \{0,1\}$ that contain odd numbers of 0's and 1's. From the DFA designed for answer of Q.3b, derive the corresponding Regular Expression.	[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	What is the form of production in Greibach Normal Form(GNF)? What are the advantages of writing grammars in GNF? Design a Grammar that will generate variable declaration statement with initialization as optional.	[2] [4] [6]
Q.5(a) Q.5(b) Q.5(c)	Give the pictorial representation of Pushdown automata. Describe the functioning of Pushdown Automata with the help of diagram produced for answer of question Q.5a Design a Pushdown automata to recognize string anb2nc2md3m n,m>=1 Note: At a time only, a single symbol can be pushed or popped into/from stack.	[2] [4] [6]
Q.6(a) Q.6(b) Q.6(c)	Define Parsing. How pushdown Automata is helpful in designing of a Parser? Explain in brief. When a Grammar is called Ambiguous? Designing of a Top down parser for Ambiguous grammar is possible. (True/False) How to remove ambiguity from an ambiguous grammar? Justify your answer with suitable example.	[2] [4] [6]
Q.7(a) Q.7(b) Q.7(c)	Write the mathematical definition of Turing machine. Briefly describe the Halting problem of Turing machine. Design a Multi tape Turing machine to perform bitwise logical AND and logical OR operations on two input of 8-bit binary strings (string of '0' and '1'). Selection of operation will be done by checking value of a memory cell.	[2] [4] [6]

::::26/04/2019 E::::