BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC I: FOOD TECH	SEMESTER : VI SESSION : SP/19
	SUBJECT: IMF6003 FOOD ENGINEERING III	
TIME:	3 Hours	FULL MARKS: 60
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 mar idates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the corre- es/Data hand book/Graph paper etc. to be supplied to the candidates in	rks. ct question paper. n the examination hall.
Q.1(a) Q.1(b) Q.1(c)	Discuss first law of thermodynamics. Discuss the limitations of first law of thermodynamics. Derive equations of specific heat at constant volume and constant press	[2] [4] ure processes. [6]
Q.2(a) Q.2(b)	State and prove carnot theorems. Discuss the difference between heat engine, heat pump and refrigerator	[6] r with a neat sketch. [6]
Q.3(a) Q.3(b) Q.3(c)	Write down the advantages of multiple compressor refrigeration system. Discuss briefly the classification of primary refrigerants? Discuss the different methods of producing low temperatures.	. [2] [4] [6]
Q.4(a) Q.4(b)	Explain the classification of condenser and evaporator with a neat sketc Discuss the working principle of different types of compressors with a ne	h? [6] eat sketch? [6]
Q.5(a) Q.5(b)	Discuss the common sources of heat? Discuss the following cooling load. (i) Wall gain load (ii) Air change load	[2] [4]
Q.5(c)	Discuss simple vapor absorption refrigeration cycle with a neat sketch?	[6]
Q.6(a) Q.6(b)	Discuss simple vapor absorption refrigeration cycle with a neat sketch? Discuss the different instruments used for the measurement of flow prop	[6] [6] [6] [6] [6]
Q.7(a) Q.7(b)	Discuss the different types of modelling of thermal properties of frozen Explain the experimental approach to measure thermal properties of foc (i) Dilatometry	foods. [6] ods. [6]

(ii) Differential Thermal Analysis

:::::24/04/2019 E:::::