BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH	IMSc I: FOOD TECH.	SEMESTER : IV SESSION : SP/19	
TIME:	SUBJECT: IMF4001 FOOD ENGG I FLUID FLOW & MECHANICAL OPERA 3.00 Hrs.	TIONS FULL MARKS: 60	
2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questic es/Data hand book/Graph paper etc. to be supplied to the candidates in the exa	mination hall.	
Q.1(a) Q.1(b)	Define latent heat and sensible heat. A wet food product contains 70% water. After drying, it is found that 80% of ori removed. Determine: i. Mass of water removed per kilogram of wet food and ii. Composition of dried food	ginal water has been	[2] [4]
Q.1(c)	5 Kg of ice at -10° C is heated to melt it into water at 0° C; then additional heat is a water into steam. The saturated vapors exit at 100° C. Determine the different ent in the process. Specific heat of ice is 2.05 kJ/(kg °C). Specific heat of water is 4.7 heat of fusion is 333.2 kJ/kg, and latent heat of vaporization at 100° C is 2257.06 l Note that temperature remains constant in regions that involve latent heat.	halpy values involved 182 kJ/(kg ⁰ C), latent	[6]
Q.2(a) Q.2(b) Q.2(c)	What are the essential requirements of a good material handling system? What is aspiration and abrasive cleaning? Explain different wet cleaning methods.		[2] [4] [6]
Q.3(a) Q.3(b)	 What do you mean by sorting and grading? Explain: Open circuit grinding Free crushing Choke feeding grinding Closed circuit grinding 		[2] [4]
Q.3(c)	Food is milled from 6 mm to 0.0012 mm using a 10 hp motor. Determine this m reduce the size of the particles to 0.0008 mm or not? Assume Rittinger's equation		[6]
Q.4(a) Q.4(b) Q.4(c)	What is cold extruder and extruder cookers? What is electrostatic precipitator? Explain with neat diagram. Explain different types of mixing equipments for liquid of low or moderate viscosi	ty.	[2] [4] [6]
Q.5(a) Q.5(b) Q.5(c)	Define Filter aids and rate of filteration. What is the working principle of centrifugal filtration? What is classifier? Explain principal classifier methods.		[2] [4] [6]
Q.6(a) Q.6(b)	Define surface tension and viscosity. A simple U-tube manometer is installed across an orifice meter. The manometer (specific gravity 13.6) and flowing fluid through piping is carbon tetrachloride (spec manometer reads 200 mm. what is the pressure difference over a manometer in N/ is 1000 kg/m ³) Derive an expression to calculate discharge or volumetric flow rate through the	cific gravity 1.6). The m ² ? (Density of water	[2] [4]
Q.6(c)	Derive an expression to calculate discharge or volumetric flow rate through th meter.	e pipe using venturi	[6]
Q.7(a) Q.7(b) Q.7(c)	List the factors that cause minor and major frictional energy loss for a liquid flow What is the difference between centrifugal and reciprocating pumps? Write in brief with neat sketch on reciprocating pump.	ing in a pipe.	[2] [4] [6]

:::::22/04/2019 E:::::