BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: VI BRANCH: CHEMISTRY SESSION: SP/19

SUBJECT: IMC6003-PHYSICAL CHEMISTRY-III

TIME: 3 Hours FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Write down the molecular orbital wave function for H_2 molecule anion. What will be the wave function for BMO of a heteronuclear diatomic molecule AB, given the electron spends 70% of its time on the nucleus of A and 30% of its time on the nucleus of B.	[2] [4]
Q.1(c)	Derive the energy equation for the MO's in the case of H_2^+ .	[6]
Q.2(a) Q.2(b) Q.2(c)	What are the conditions for effective linear combination of atomic orbitals? Draw and explain the potential energy diagrams for bonding and antibonding MO's of H_2 molecule. Explain the formation of σ and π bonding and antibonding MO's from 1s and 2p atomic orbitals with suitable diagrams.	[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Comment on the free energy change of the photochemical reaction with reasons. Explain very high and very low quantum efficiencies for photochemical reactions. Describe the mechanism of energy transfer in a photosensitized reaction. Explain with the help of reactions the processes of photosensitization and quenching.	[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	How is the dipole moment calculated for a molecule AB_2 with bond angle θ ? Explain the dependence of polarizability on frequency with the help of polarization versus log v graph. Write down the Maxwell relation and the Lorentz-Lorentz equation. State their significance. What is polarizability volume (α ')? Why is it high in case of alkali metal atoms?	[2] [4] [6]
Q.5(a) Q.5(b) Q.5(c)	p -chlorobenzene has a zero dipole moment while p -dihydroxy benzene has a definite value. Explain. Discuss (only) the polarization of a molecule in an electric field. For a gaseous hydrocarbon C_nH_{2n+2} , the refractive index at STP is 1.00138. Determine the formula of the hydrocarbon, given that the R_m values for H and C are 1.10 and 2.42 cm³ mol¹¹ respectively and $V_m = 22.414 \text{ cm}^3 \text{ mol}^1$.	[2] [4] [6]
Q.6(a) Q.6(b) Q.6(c)	State Raoult's law for the lowering of vapour pressure. How is it used for determining the molar mass of a nonvolatile solute? A 5.0% aqueous solution by mass of a nonvolatile solute boils at 100.15° C. Calculate the molar mass of the solute. [Given: $k_b = 0.52$ K kg mol ⁻¹]	[2] [4] [6]
Q.7(a) Q.7(b)	How is relative lowering of vapour pressure related to the osmotic pressure? 0.1M solution of KNO ₃ has an osmotic pressure of 4.5 atm at 300K. Calculate the apparent degree of dissociation of the salt.	[2] [4]
Q.7(c)	Explain the conditions under which abnormal molar masses of solutes are obtained from the measurement of colligative properties of their solutions.	[6]

:::::24/04/2019 E:::::