BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE I: EEE		SEMESTER : VI SESSION : SP/19	
TIME:	3 Hours	SUBJECT EE6205 INDUSTRIAL DRIVES AND CONTROL	FULL MARKS: 60	
INSTRUE 1. The e 2. Cand 3. The e 4. Befor 5. Table	CTIONS: question paper co lidates may attem missing data, if an re attempting the es/Data hand boo	ontains 7 questions each of 12 marks and total 84 marks. apt any 5 questions maximum of 60 marks. hy, may be assumed suitably. e question paper, be sure that you have got the correct que k/Graph paper etc. to be supplied to the candidates in the e	stion paper. examination hall.	
Q.1(a) Q.1(b) Q.1(c)	Define an electri Derive the criter Explain four quad	cal drive with an example. ia for steady state stability. drant operation of a drive with the example of a hoist.		[2] [4] [6]
Q.2(a) Q.2(b)	What do you und A constant speed i. Load risi ii. Uniform iii. Regenera iv. Remains Estimate the pow	erstand by constant torque drive and constant power drive? I drive has the following duty cycle; ng from 0 to 400kW : 5 min load of 500kW : 5 min ative power of 400kW returned to the supply : 4 min idle for : 2 min yer rating of the motor. Assume the losses to be proportional t	a (power) ²	[2] [4]
Q.2(c)	Explain the working of close-loop speed control of multi-motor drive with a suitable diagram.			
Q.3(a) Q.3(b) Q.3(c)	What is regenerative braking in dc motor drives? A 200 V, 10.5 A, 2000 rpm shunt motor has the armature and field resistance of 0.5 and 400 respectively. It drives a load whose torque is constant at rated motor torque. Calculate motor specif source voltage drops to 175 V. A 200 V, 875 rpm, 150 A separately excited dc motor has an armature resistance of 0.06 Ω . It is fe from a single phase fully controlled rectifier with an ac source voltage of 220 V, 50 Hz. Assuming continuous conduction, calculate i. Firing angle for rated motor torque and 750 rpm ii. Firing angle for rated motor torque and (-500) rpm iii. Motor speed for α = 160° and rated torque		nce of 0.5 and 400 Ω Calculate motor speed te of 0.06 Ω. It is fed /, 50 Hz. Assuming	[2] [4] [6]
Q.4(a)	Draw the per-pha	ase stator referred equivalent circuit of an induction motor and	l give an expression for	[2]
Q.4(b)	rotor current. Draw and briefly	describe about the close loop speed control of induction n	notor with static rotor	[4]
Q.4(c)	A 2200V,2600kw, referred to the s of two sections c (i) (i)	735rpm,50Hz,8pole, 3-phase squirrel-cage induction motor hat tator: Rs=0.75 Ω , R'_r =0.1 Ω ,Xs=0.45 Ω , X'_r =0.55 Ω . Stator windir onnected in parallel. Calculating starting torque and maximum torque as a ratio conotor is started by star-delta switching. what is the maximum during starting?	s following parameters ng is delta and consists of rated torque, if the n value of line current	[6]
	Calculate transfo twice the rated v	ormation ratio of an auto transformer so as to limit the maxim value. What is the value of starting torque?	um starting current to	
Q.5(a)	What are the ad	vantages of current source inverter (CSI) Control over voltag	e source inverter (VSI)	[2]
Q.5(b)	Draw and explain	voltage source invertor (VSI) controlled induction motor drive	e with ac supply and dc	[4]
Q.5(c)	Describe the close	ed-loop speed control of induction motor using voltage source	inverter (VSI) drives.	[6]

Q.6(a)	What are the modes of variable frequency control in synchronous motor?		
Q.6(b)	Explain the starting, and braking phenomena with fixed frequency supply of a synchronous motor.		
Q.6(c)	A 500 kW, 3-phase, 3.3 kV, 50 Hz, 0.8 (lagging) power factor, 4 pole, star-connected synchronous		
motor has following parameters: $X_s=15\Omega$, $R_s=0.$ Rated field current is 10 A. Calculate			
	(i) Armature current and power factor at half the rated torque and rated field current		

(ii) Field current to get unity power factor at the rated torque.

Q.7(a) Q.7(b) Q.7(c)	Define Co-efficient of Adhesion in traction system? Draw speed-time curve for main line train and explain different sections of the curve. Write a short note on 'Pulse width modulated (PWM) voltage source inverter (VSI) squirrel-cage Induction motor drive' for electric traction.	[2] [4] [6]
----------------------------	--	-------------------

:::::24/04/2019 E:::::