BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.Tech H: EEE	SEMESTER: II SESSION: SP/19
TIME:	SUBJECT: EE565 POWER SYSTEM OPERATION AND CONT 3 Hours	FOL FULL MARKS: 50
INSTRUC 1. The o 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 mark mpt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct es/Data hand book/Graph paper etc. to be supplied to the candidates in	s. question paper. the examination hall.
Q.1(a) Q.1(b)	Analyze the functioning of Independent system operator in restructured electricity market. Differentiate the traditional and deregulated market. How the deregulated market is advantageous over the regulated market?	
Q.2(a)	Analyze the transfer function for non-reheat type steam turbine. How wi	ill it be different in case of [5]
Q.2(b)	reheat type steam turbine? A 500 MW generator has a speed regulation of 4%. If the frequency drops by 0.12 Hz with an unchanged reference, determine the increase in turbine power. Also find by how much the reference power setting should be changed if the turbine power remains unchanged.	
Q.3(a)	Defend by proper derivation how if the load disturbance occurs in only or	e of the area in a two area [5]
Q.3(b)	system, the change in frequency is only half of the steady state error. Two control areas have the following characteristics: Area -1 : Speed Regulation = 0.02 p.u., Damping Coefficient = 0.8 p.u., R Area -2 : Speed Regulation = 0.025 p.u., Damping Coefficient = 0.9 p.u., Determine the steady-state frequency change and the changed frequency 1200 MW, which occurs in Area -1. Also find the tie-line power flow change	[5] ated MVA =1500 Rated MVA =500 following a load change of e.
Q.4(a) Q.4(b)	Construct the co-ordination equation of economic dispatch neglecting tran Determine the economic operation schedule of a two-plant system to meet Incremental fuel cost in Rs/ MWh and loss coefficients in /MW of the two $\frac{dC_1}{dPG_1} = 0.01PG_1 + 2.0$ $\frac{dC_2}{dPG_2} = 0.01PG_2 + 1.5$ $B_{11}=0.0015, B_{12}=B_{21}= -0.0005, B_{22}=0.0025$	nsmission losses. [5] t a load demand of 160 MW. [5] plant are given below:
Q.5(a) Q.5(b)	Analyze the steady state performance of a speed governor. Mention the steps of priority method for the solution of UC problem. Me the method.	[5] ention the disadvantages of [5]

:::::29/04/2019 M:::::