BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	M.Tech : EEE										SEMESTE SESSION:	R: II SP/19	
TIME.	2.11	SUBJE	ст: І	EE555 S	TATIS	TICA	AL C	ONTF	ROL THI	EORY	F 1111 M A		
IIME:	3 Hours										FULL MA	KKS: 50	
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Tables	TIONS: uestion paper conta opt all questions. hissing data, if any, e attempting the qu s/Data hand book/G	nins 5 qu may be a estion pa raph pap	estic assur aper oer e	ons each med sui , be sur tc. to b	n of 10 tably. re that e supp) ma : you olied	arks u ha 1 to	and t ve go the c	total 50 ot the c candida) marks. orrect qu tes in the	uestion paper. e examination f	nall.	
Q.1(a)	Differentiate between PDF and CDF of a random variable. A fair coin is tossed n times. Let the random variable Y be the difference between the number of he and the number of tails. Sketch the CDE of Y for $n=4$												[5]
Q.1(b)	Determine and plot	$F_{Y}(y)$	and	$f_{Y}(y),$	if y=-	4x+3	3 an	f_X	(x) = 2	$e^{-2x}U(x)$).		[5]
Q.2(a)	The joint PDF of ra	ndom vai	riabl	es X anc	l Y is g	iver	ı by						[5]
	$f_{XY}(x,y) = \begin{cases} 2e^{-ix} \\ 0 \end{cases}$	^{+y)} for s othe	x≥(erwi	$y \ge 0$ se									
Q.2(b)	 (a) Determine the marginal density function of X and Y. (b) Determine conditional density function of (i) X given Y (ii) Y given X. Correlate the PDF with characteristic function. Let z=aX+bY, where X and Y are independent random variables and a and b are arbitrary constants. Determine the characteristic function of z. 												[5]
Q.3(a)	Compare wiener process and random walk process. Derive the autocorrelation function of random walk process. Investigate that the random walk process												[5]
Q.3(b)	Formulate the step A system has	s of desig $\phi_{ss}(x)$	gning s)=	g a real $\frac{1}{(s^2-1)}$	time V 36 $\overline{)(s^2 - }$	$\sqrt[4]{ien}$	er fi $\dot{\phi}, \phi_{,}$	ter.	= 0.5,	$G_d(s) =$	$e^{0.1s}$		[5]
	Determine the opti	mum ove	erall	transfer	funct	ion	usin	g Bod	le and S	hannon n	nethod.		
Q.4(a)	What is power spectral density? Explain. Relate power spectral density to autocorrelation function. The input into a filter is zero-mean white noise with noise power density N0/2. The filter has transfe $H(f) = \frac{1}{1 + j2\pi f}$ function (a) Compute Sw(f) and Bw(T)												[5]
0 4(b)	(b) Determine the average power of the output.												
Q.4(D)	variance and PSD of the output in terms of input.												
Q.5(a)	diagram for the Markov chains with the following transition probability matrix												[5]
	(0	1	0	(1)		0	0					
	(6	1) 1/2	0	0	(<i>b</i>)		0						
			U			LV	1	٧J					

- Q.5(b) A certain part of machine can be in two parts: working or undergoing repair. A working part fails during [5] the course of a day with probability a. A part undergoing repair is put into working order during the course of a day with probability b. Let X_n be the state of the part
 - (a) Show that X_n is a two-state Markov chain and give its one-step transition probability matrix P.
 - (b) Determine the n-step transition probability matrix Pⁿ.