BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	ME I: EEE	SEMESTER : II SESSION : SP/19	
TIME:	SUBJECT: EE551 OPTIMAL CONTROL THEORY 3 Hours	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b)	Define Optimization? Classify different types of optimization problems and techniques to solve optimization problems? Calculate gradient vector for the function $f(x) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 3x_2^2 + 3x_2x_3 + 2x_3^2$	mention different	[5] [5]
	$at \qquad x = x^* = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$		
Q.2(a)	Find the optimum of $J = \int_{0}^{2} [x^{2}(t) - 2tx(t)]dt$		[5]
	that satisfy the boundary condition $X(0)=1$ and $x(2)=5$		
Q.2(b)	Find the optimum of $J = \int_{0}^{2} [x^{2}(t) - 2tx(t)]dt$		[5]
	that satisfy the boundary condition $X(0)=1$ and $x(2)=5$		
Q.3(a)	Find the equation of the curve that is extremal for the functional		[5]
	$J(x) = \int_{t_0}^{t_f} [t x(t) + x^2(t)] dt$		
	And $(t_f > 0)$, for the boundary condition specified below:		
	a) if $t_f = 1, x(0) = 1, x(1) = 2.75$		
Q.3(b)	b) if $x(0) = 1, x(t_f) = 5$ and t_f is free Find the extremal for the functional $J = \int_{1}^{t_f} (2x^2(t) + 24tx(t))dt$		[5]
	$t_0 = 0$		
0 ((-)	Left end point is fixed i.e $x(t_0) = 0$, $t_0 = 0$, is fixed and t_f is free but $x(t_f) = 2$.		
Q.4(a)	Outline the algorithmic steps to compute optimal control u*(t) using Hamilton-Ja approach?		[5]
Q.4(b)	Determine the smooth curve of smallest length connecting point $x(0) = 1$ to the lateral tendence to the length of the curve lying in the $t - x(t)$ plane, with $t_0 = 0$ and $t_f = 5$	ne $t = 5$.	[5]
	$J(x) = \int_{0}^{5} [1 + x^{2}(t)]^{1/2} dt$		

- Q.5(a) State the objective of Infinite final time LQR problem and discuss about the stability analysis of the [5] closed loop system for Infinite time LQR problem? [5]
- Q.5(b) Consider the control system described by

$$\dot{x} = Ax + Bu$$
, where $A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

and the Performance Index (J) and (Q) given by

 $J = \int_0^\infty (x_1^2(t) + x_2^2(t) + u^2(t)) dt$ Solve for the optimal control signal u*(t) such that the Performance Index (J) is minimized?

:::::24/04/2019 M:::::