BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)	
CLASS: BRANCI	BE H: EEE	SEMESTER : IV SESSION : SP/19
TIME:	SUBJECT: EE4209 ENGINEERING ELECTROMAGNETICS 3 Hours	FULL MARKS: 60
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b) Q.1(c)	If $A = A_R a_R + A_{\Theta} a_{\Theta} + A_{\emptyset} a_{\emptyset}$ and write an expression to find its curl. Obtain the relation between vector magnetic potential A and magnetic flux \emptyset throu Derive a mathematical expression for electrostatic energy in terms of E and D.	[2] gh given area. [4] [6]
Q.2(a) Q.2(b)	Express the poissons equation in cylindrical coordinate system. What are the electrostatic boundary conditions at the interface between two die which laws are used in obtaining boundary conditions and write their equations?	
Q.2(c)	Obtain the solution of two dimensional Laplace equation by method of separati Cylindrical coordinate system.	on of variables in [6]
Q.3(a) Q.3(b) Q.3(c)	What is meant by the polarization of a wave? Write non homogenous Helmholtz equations for the time varying fields and define k The conductivity of silver is $\sigma_{ag} = 6.15 \times 10^7$ S/m. Determine the following a) atten intrinsic impedance c) skin depth at 1 GHz.	[2] (in the equations. [4] (uation constant b) [6]
Q.4(a) Q.4(b)	What is Brewster angle and write its expression in case of parallel polarisation? A uniform plane wave is incident from air onto a glass normally. The intrinsic imp 260 Ω . Determine the reflection and refraction coefficients.	[2] edance of glass is [4]
Q.4(c)	A plane wave with electric field in y direction propagates with frequency 100MHZ in direction and impinges normally on a perfectly conducting plane at $x = 0$. Assume to be 6 (mV/m) write the phasor expression for a) E_i and H_i of incident wave b) E_r a wave and E_1 and H_1 of the total wave.	he amplitude of E _i
Q.5(a) Q.5(b)	Why TEM waves cannot exist in single conductor waveguides? An air filled rectangular wave guide has dimensions a = 7.21cm and b = 3.40 cm ca frequency of TM ₁₂ mode?	[2] Iculate the cutoff [4]
Q.5(c)	Derive wave impedance of Transverse magnetic waves propagating in a uniform was $z_{TM} = \frac{\gamma}{j\omega\varepsilon}$	veguide [6]
Q.6(a) Q.6(b)	Give a general definition for antenna. Write down steps to find electromagnetic field due to an assumed time harmonic co on antenna structure?	[2] urrent distribution [4]
Q.6(c)	Determine E due to a given magnetic field H for a time harmonic current distribution $H = -a_{\emptyset} \frac{Idl}{4\pi} \beta^2 sin_{\theta} \left[\frac{1}{j\beta R} + \frac{1}{j\beta R^2} \right] e^{-j\beta R}$	on in free space. [6]
Q.7(a) Q.7(b)	Why the Method of images is used in determining scalar potential V? Write the differential form and integral form of Maxwell's equations for time varyi significance.	[2] ng fields and their [4]
Q.7(c)	A Positive point charge Q is located at distances d_1 and d_2 respectively from perpendicular conducting half planes as shown in the figure. Determine the force of charges induced on the planes?	

:::::29/04/2019 E:::::