BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE I: EEE		SEMESTER : IV/ADD SESSION : SP/19	
		SUBJECT EE4207-DIGITAL SIGNAL PROCESSING		
TIME:	3 Hours		FULL MARKS: 60	
INSTRUC 1. The o 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper lidates may atte missing data, if re attempting t es/Data hand b	contains 7 questions each of 12 marks and total 84 marks. empt any 5 questions maximum of 60 marks. f any, may be assumed suitably. the question paper, be sure that you have got the correct que ook/Graph paper etc. to be supplied to the candidates in the	stion paper. examination hall.	
0.1(2)	Find the relati	ianshin batwaan Diserata Fourier Transform to Diserata Tima Fo	rior Corios	121
Q.1(b) Q.1(c)	Distinguish bet Given x(n) = intermediate r	guish between linear convolution and circular convolution. $x(n) = \{\underline{0}, 1, 2, 3, 4, 5, 6, 7\}$, find 8-point DFT X(k) using the DIT-FFT algorithm. Show all the nediate results.		[2] [4] [6]
Q.2(a)	a) The following specifications are given for an LPF: $\Omega_P = 1$, $\Omega_S = 2.33$, $A_P = 0.5$ dB, $A_S = 22$ dB. (the filter order for a Chebyshev and a Butterworth analog filter.		dB, $A_s = 22$ dB. Compute	[2]
Q.2(b) Q.2(c)	Write the comparison characteristics between IIR and FIR filter. Design an IIR low-pass Butterworth filter using the impulse invariant method for the following specifications Pass band: $0.8 \le H(e^{jw}) \le 1$ $ w \le 0.2\pi$ Stop band: $ H(e^{jw}) \le 0.2$ $0.6\pi \le w \le \pi$. Assume T= 1 sec.			[4] [6]
Q.3(a) Q.3(b) Q.3(c)	Explain the sca What is the Gi Explain the giv	aling and differentiation property of Z-transform? bbs phenomena? ven system $\sum_{k=-\infty}^{n} x(k)$ with respect to following properties	(i) Dynamicity (ii) Time	[2] [4] [6]
0.4(*)			h Carlton a share Catte	[2]
Q.4(a) Q.4(b) Q.4(c)	impulse respondence for the community of the community o	parisons for the window, frequency sampling and optimal method nse filters. e frequency response (DTFT) of causal rectangular window of len filter to meet the following specifications: (i) pass band edge : I Iz (iii) pass band attenuation: $A_P = 2 \text{ dB}$ (iv) stop band attenuatio F = 20 KHz [Don't evaluvate frequency response]	gth N? $F_P = 2$ KHz, (ii) stop band $h: A_s = 42$ dB (v) sampling	[2] [4] [6]
Q.5(a) Q.5(b)	 List the three properties of DFT. Determine the impulse response for the cascaded of two linear time-invariant systems having in responses h₁(n) = (1/2)ⁿ u(n) and h₂(n) = (1/4)ⁿ u(n). Determine the inverse Z-transform of the X(z) = (z+2) / (2z²-7z+3) if the ROCs are (i) z > 3 (ii (1/2) (iii) (1/2) < z < 3. 		systems having impulse	[2] [4]
Q.5(c)			are (i) $ z > 3$ (ii) $ z <$	[6]
Q.6(a) Q.6(b)	Distinguish between the following: (i) Energy and Power signal (ii) Multichannel and Multidimensional Consider the analog signal $X_a(t) = 3Cos (2000\pi t) + 5Sin (6000\pi t) + 10Cos (12000\pi t)$ (i) what is the Nyquist rate for this signal? (ii) if we sampled this signal with the sampling rate 500 samples/s. What is the discrete time signal after sampling?		l and Multidimensional. 00π t) the sampling rate 5000	[2] [4]
Q.6(c)	The accumulator described by $\sum_{k=-\infty}^{n} x(k) = y(n)$ is excited by the sequence $x(n) = nu(n)$. Determinits output under the condition (i) It is initially relaxed (ii) Initially, y (-1) =1			[6]
Q.7(a)	Estimate the filter order of a linear-phase low-pass FIR filter using Kaiser formula with the followi specifications: Pass band edge frequency = 1.8 KHz, Stop-band edge frequency = 3 KHz, Maximum pase band attenuation = 25 dP, and compliant frequency = 12 kHz			[2]
Q.7(b)	Describe the r	elationship between analog and digital, filter poles and frequend n.	ties in Impulse- Invariant	[4]
Q.7(c)	Obtain the dir $y(n) = 2r \cos(w)$	ect-form II structure of the system described by difference equa v_0 y(n-1) - $r^2y(n-2) + x(n) - r \cos(w_0) x(n-1)$	tion.	[6]

:::::24/04/2019 E:::::