BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	MTECH	SEMESTER : II	
BRANCI	I: ECE	SESSION : SP/19	
TIME:	SUBJECT : EC564 CODING THEORY & APPLICATIONS 3.00 Hrs.	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b)	$P(x_5) = 0.15$ respectively. Design a Shanon-Fano code for X.		[5] [5]
Q.2(a)	Define Hamming weight, Hamming distance, Minimum distance and Minimum weight.		[5]
Q.2(b)	List the properties of Linear code. What is Singleton Bound and minimum distance code?		[5]
Q.3(a)	Define Burst error and describe the condition that a code is cyclic.		[5]
Q.3(b)	Let the polynomial $G(x)=x^{10}+x^8+x^5+x^4+x^2+x+1$ be generator polynomial of a cyclic code GF(2) with block length 15. Compute the generator polynomial G and parity check matrix H.		[5]
Q.4(a)	Explain the turbo codes.		[5]
Q.4(b)	Design a rate $\frac{1}{2}$ convolutional encoder with a constraint length v=4 and d*=6. Also construct the state diagram for this encoder.		[5]
Q.5(a)	Describe RSA algorithm.		[5]
Q.5(b)	Examine the problems in symmetric-key cryptography.		[5]

:::::26/04/2019 M:::::