BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: VIII BRANCH: MATHS &COMPUTING SESSION: SP/19

SUBJECT: CS6107 COMPUTER NETWORKS

TIME: 3 Hours FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Describe the OSI layers and functionality with clear diagrams. What is the delay X bandwidth of a point to point network 2 km in length, when the propagation delay becomes equal to the transmit delay for 100 byte packets? (Assume propagation delay= 2 X 10 ⁸ m/sec)	[6] [6]
Q.2(a)	Explain bit stuffing and byte stuffing with an example. Using bit stuffing show the bit sequence transmitted over the link in the following sequence: 110101111110101111111010111111110	[6]
Q.2(b)	Give the NRZ, NRZI and Manchester coding for the given bit sequence: 1101 1110 1010 1101 1011 1110 1111	[6]
Q.3(a) Q.3(b)	What do you mean by capture effect in an ethernet back-off algorithm? How does a monitor resolve the issue of a corrupted or orphaned frame in a token ring? What does a monitor do for missing tokens?	[6] [6]
Q.4(a)	Why do we need subnetting? With an example explain how communication is made possible in virtual private networks?	[6]
Q.4(b)	Differentiate features of reliable flooding with OSPF routing protocol.	[6]
Q.5(a)	How is DVMRP different from PIM? Who decides to create a source specific tree in a PIM? Does the network structure thus created have problems?	[6]
Q.5(b)	Describe the MPLS scheme for multicast communications. Does it improve the router performance? Justify your answer.	[6]
Q.6(a) Q.6(b)	Draw the UDP header and outline its main features. How does it ensure reliable transmission? How does an RPS protocol ensure reliable message delivery and support for large message size?	[6] [6]
Q.7(a)	Differentiate between windows based and rate based resource allocation scheme. How is the fairness index computed for a fair resource allocation?	[6]
Q.7(b)	Explain the slow start mechanism for TCP congestion control. How is it better than additive increase congestion control?	[6]

:::::24/04/2019 M:::::