BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLAS BRAN	S: ICH:	BE CSE	Ξ	SEMESTER: VI SESSION : SP/2019	
SUBJECT : CS6105 COMPILER DESIGN					
TIME	:	1.5	HOURS	FULL MARKS: 25	
INST 1. Th 2. Ca 3. In 4. Be 5. Th	RUC Indid thos fore ie mi	TIONS tal ma lates r e case atter issing	: arks of the questions are 30. nay attempt for all 30 marks. es where the marks obtained exceed 25 marks, the excess will be igr npting the question paper, be sure that you have got the correct que data, if any, may be assumed suitably.	nored. estion paper.	
Q1 (a) '	Write differ	tasks performed by two cousins of Compilers. Explain with example from simple compiler?	how they [2]	
(Progra var I,j var r : begin r=i+j*' end.	am : integer; real; 10;	[6]	
Q2 (a) l b) '	Discus Write	s the challenges in compiler design and its applications. a LEX specification file to identify the tokens of the language C.	[2] [3]	
Q3 (a) '	Which (i) (vi	of the following expressions have l-values and / or R-values. A[I+1] (ii) * A (iii) & A (iv) & (* A) (v) *(& A)) * (&(&A))	[2]	
(b) (Consid Stmt - Show Constr	der the following grammar: -> if cond then stmt else stmt if cond then stmt this grammar is ambiguous ruct an equivalent unambiguous grammar	[3]	
Q4 (a) 1	Write follow S->Aa A->Sb	an algorithm for eliminating left recursion. Verify your algorit /ing grammar c	thm with the [2]	
(b) ' - -	Write E->E+ ⁻ T->T*F F->(E)	an algorithm for Recursive Descent Calculator of the following gram 「 T 「 F id	mar [3]	
Q5 (a) 9	Show	that the given grammar is not in $LL(1)$	[2]	
(b) (Consic E→ BA A→&E B→tru Show	b, A⊃CA+DIa, B⊃CB+aID ler the grammar A BAI€ JeIfalse that the grammar is LL(1) and construct the predictive parsing table		

6 Consider the following grammar: Non-terminals {S, A} Terminals {c, b} Production rules: $\{ S \rightarrow AA, \}$

A→cA, A→b } Starting symbol is 'S'. Construct SLR parsing table for this grammar. List out all conflicts which are present in the designed SLR parsing table? For removal of above conflicts (if they are present), what will be done? Explain in detail.

:::: 01/03/2019 :::::E

Q6