BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

$\begin{array}{ll}\text { CLASS: } & \text { IMSC } \\ \text { BRANCH: } & \text { MATHS \& COMP. }\end{array}$
SEMESTER:IV
SESSION : SP/19
SUBJECT: CS6101 DESIGN AND ANALYSIS OF COMPUTER ALGORITHM
TIME: 3:00 HOURS
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q. 1 (a) Write a recursive function for calculating the sum of the elements in the array and find its time complexity.
Q. 1 (b) Discuss the different asymptotic notation.
Q.1(c) What is randomized algorithm? Derive an algorithm using random number approach to identify the repeated array elements $\& \in$ find its time complexity.
Q.2(a) Solve the following recurrence equation using Master - Theorem:
$T(n)=9 T(n / 3)+4 n^{6}, n \geq 3$ and a is a power of $3 . T(1)=c$.
Q.2(b) Show how quick-sort works on the following sequence of keys: 5, 5, 8, 3, 4, 3,2. show the steps.
Q.2(c) Write an algorithm for quick-sort and derive its complexity in best, average and worst cases.
Q.3(a) Illustrate the difference between greedy and divide and conquer approach.
Q.3(b) Solve the following using job-sequencing with deadline algorithm.
$\mathrm{N}=5$, ($\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5)=(20,15,10,5,1)$ and $(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)$. Find the optimal solution with a profit.
Q.3(c) Give the pseudo code for prim's algorithm and apply the same to find the MST of the graph shown below:

Q.4(a) Illustrate the difference between dynamic programming and divide and conquer approach.
Q.4(b) Write an algorithm for finding the all pair shortest path problem, discuss its complexity.
Q.4(c) Find a minimum cost path from S to T in multistage graph using dynamic programming.

Q.5(a) What are the major advantages of backtracking?
[2]
Q.5(b) Draw the state space tree for 4×4 queen problem.
Q.5(c) Write an algorithm for NXN queen problem.
Q.6(a) Define LIFO search and FIFO search in branch and bound. Given the knapsack capacity $\mathrm{W}=10$.

Item	Weight	Value/profit
1	4	40
2	7	42
3	5	25
4	3	12

Q.6(c) Solve the following problem for TSP using branch and bound, the cost matrix is given below

∞	7	3	12	8
3	∞	6	14	9
5	8	∞	6	18
9	3	5	∞	11
18	14	9	8	∞

Q.7(a) Differentiate between NP-Complete and NP-hard problem.
[2]
Q.7(b) Design the relationship among P, NP, NP complete and NP-hard problems.
Q.7(c) Discuss the non deterministic sorting algorithm.

