BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC H: MATHS & COMP.	SEMESTER : IV SESSION : SP/1	19
TIME:	SUBJECT: CS6101 DESIGN AND ANALYSIS OF COMPUTER ALGORITHM 3:00 HOURS	FULL MARKS:	60
INSTRU 1. The 0 2. Cand 3. The 1 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam	n paper. nination hall.	
Q.1(a)	Write a recursive function for calculating the sum of the elements in the array an	d find its time	[2]
Q.1(b) Q.1(c)	Discuss the different asymptotic notation. What is randomized algorithm? Derive an algorithm using random number approach repeated array elements & find its time complexity.	to identify the	[4] [6]
Q.2(a)	Solve the following recurrence equation using Master - Theorem: $T(n) = 9T(n/3) + 4n^6$, $n > 3$, and a is a power of 3. $T(1) = c$.		[2]
Q.2(b)	Show how quick-sort works on the following sequence of keys: 5, 5,8,3,4,3,2. show	/ the steps.	[4]
Q.2(c)	Write an algorithm for quick-sort and derive its complexity in best, average and we	orst cases.	[6]
Q.3(a) Q.3(b)	Illustrate the difference between greedy and divide and conquer approach. Solve the following using job-sequencing with deadline algorithm. N=5, (p1, p2,p3,p4,p5)=(20,15,10,5,1) and (d1, d2,d3,d4,d5)=(2,2,1,3,3). Find	d the optimal	[2] [4]
Q.3(c)	Give the pseudo code for prim's algorithm and apply the same to find the MST of th below:	e graph shown	[6]
	h 1 c		

- [2] [4] [6] Q.4(a) Illustrate the difference between dynamic programming and divide and conquer approach.
- Q.4(b) Write an algorithm for finding the all pair shortest path problem, discuss its complexity.
- Q.4(c) Find a minimum cost path from S to T in multistage graph using dynamic programming.

- Q.5(a) What are the major advantages of backtracking?
- Q.5(b) Draw the state space tree for 4x4 queen problem.
- Q.5(c) Write an algorithm for NXN queen problem.
- Q.6(a) Define LIFO search and FIFO search in branch and bound.

Q.6(b) Solve the following instantance of the knapsack problem using branch and bound Given the knapsack capacity W=10.

Item	Weight	Value/profit			
1	4	40			
2	7	42			
3	5	25			
4	3	12			

Q.6(c) Solve the following problem for TSP using branch and bound, the cost matrix is given below

∞	1	3	1Z	8
3	∞	6	14	9
5	8	∞	6	18
9	3	5	œ	11
18	14	9	8	8

- Q.7(a) Differentiate between NP-Complete and NP-hard problem.
- Q.7(b) Design the relationship among P, NP, NP complete and NP-hard problems.
- Q.7(c) Discuss the non deterministic sorting algorithm.

:::::03/05/2019:::::E

[6]

[2] [4]

[6]

[2]

[4]

[6]

[2] [4]