BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BE	SEMESTER : IV	
BRANCH	I: CSE	SESSION : SP/19	
TIME:	SUBJECT: CS4109 COMPUTER SYSTEM ARCHITECTURE 3.00 Hrs.	FULL MARKS: 60	
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct que es/Data hand book/Graph paper etc. to be supplied to the candidates in the	estion paper. examination hall.	
Q.1(a)	Realize the full-adder with help of universal gates and not gates.	able.	[2]
Q.1(b)	Explain the gate level and register level design process.		[4]
Q.1(c)	Implement the four-bit—stream serial adder stating its state table and truth t		[6]
Q.2(a)	Differentiate between user mode and supervisor mode.		[2]
Q.2(b)	Explain M/ M/1 model of computer system.		[4]
Q.2(c)	How the floating-point numbers represented in the computer system?		[6]
Q.3(a) Q.3(b) Q.3(c)	What is Bus arbitration? Explain the n-bit combinational arithmetic logic unit operation with suitable diagram. Consider (-7) and (-5) for Booth's multiplication. Draw flowchart and required circuitry for Booth's multiplication.		[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	What is an instruction pipeline? Differentiate Microprogrammed control from hardwired control. What is hardwired control and micro-programmed control? Explain the state element method for hardwired design.	table method and delay	[2] [4] [6]
Q.5(a)	What is memory fragmentation?	with three-page frame	[2]
Q.5(b)	Consider a paging system which uses the following page reference string capacity. Use the page replacement algorithm (FIFO, LRU and OPT), to sketch a of faults in each case.	and find the page number	[4]
Q.5(c)	 A computer uses RAM chip of 1024X1 capacities. (i) How many chips are needed to provide a memory capacity of 16 bytes? (ii) How many chips are needed and how should their address lines be connec capacity of 1024 bytes? 	ted to provide a memory	[6]
Q.6(a)	What is associative memory?		[2]
Q.6(b)	Explain the serial mode of transmission along with its different types.		[4]
Q.6(c)	Explain different data transfer techniques with diagram.		[6]
Q.7(a)	What is an instruction cycle?		[2]
Q.7(b)	Discuss the different types of hazards in context of pipeline processing.		[4]
Q.7(c)	Write short notes on parallel processing.		[6]

:::::26/04/2019 E::::