BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CHEMICAL ENGG

SUBJECT : CL4007 TRANSPORT PHENOMENA

TIME: 1.5 HOURS

FULL MARKS: 25

[6]

SEMESTER: IV

SESSION: SP/2019

INSTRUCTIONS:

1. The total marks of the questions are 30.

2. Candidates may attempt for all 30 marks.

- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.

5. The missing data, if any, may be assumed suitably.

- Q1 A fluid of constant density is flowing in laminar flow at steady state in the horizontal x [6] direction between two flat and parallel plates. The distance between the two plates in the vertical y direction is 2y₀. Derive the equation for the velocity profile within this fluid and the maximum velocity for a distance L m in the x direction. Using Navier Stoke's equation.
- Q2 For a layer of liquid flowing in laminar flow in the z direction down a vertical plate or [6] surface, derive the velocity profile. Where δ is the thickness of the layer, x is the distance from the free surface of the liquid toward the plate and v_z is the velocity at a distance x from the free surface.

(i) What is the maximum velocity $v_{z,max}$? Derive the expression for the average velocity $v_{z av}$ and also relate it to $v_{z,max}$.

- Q3 Water in the bottom of narrow metal tube is held at constant temperature of 298K. The [6] total pressure of air (assumed dry) is 1.01325×10^5 Pa and the temperature is 293K. Water evaporates and diffuses through the air in the tube and the diffusion path Z_2 - Z_1 is 0.1524m long. Calculate the rate of evaporation at steady state in Kg mol/m². S. The diffusivity of water vapor at 293K and 1 atm pressure is 0.25×10^{-4} m²/sec. Assume that the system is isothermal. [The vapor pressure of water 20°C is 17.54mm]
- Q4 Two bulbs are connected by a straight tube, 0.001 m in diameter and 0.15 m in [6] length. Initially the bulb at End 1 contains N₂ and the bulb at End 2 contains H₂. Pressure and temperature are constant at 25 °C and 1 atm. At a time after diffusion starts, the nitrogen content of the gas at End 1 of the tube is 80 mol% and at End 2 is 25 mol%. If the binary diffusion coefficient is 0.784 cm²/s, determine:
 (a) The rates and directions of mass transfer in mol/s
 (b) The species velocities relative to stationary coordinates at End1 and End 2, in m/s
 (c) molar average velocity at any point.
- Q5 Briefly describe the following terms
 - (i) Gradient;
 - (ii) Divergence;
 - (iii) Tensors;

:::: 02/03//2019 E:::::