BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BE CHEM ENGG	``	,
TIME:	3 Hours	SUBJECT: CL4007 TRANSF	PORT PHENOMENA

SEMESTER : IV SESSION : SP/19

FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- Q.1(a) Using Navier -Stoke's equation, determine the velocity distribution in steady, laminar flow of an [6] incompressible and viscosity fluid between two parallel and vertical plates. The surface on the left is stationary and other is moving vertically at a constant velocity v₀.
- Q.1(b) A Newtonian fluid of constant density is in a vertical cylinder of radius R with the cylinder rotating [6] about its axis at angular velocity ω. Find the shape of the free surface at steady state.
- Q.2 A Newtonian fluid is in laminar flow in a narrow slit formed by two parallel walls a distance 2B apart. [12] The flow is generated due to the motion of the wall in positive z- direction at x = B and corresponding velocity of the wall is U. It is understood that B << W, so that edge effects are unimportant. Obtain the following quantities by making a shell momentum balance when $v_x = 0$, $v_y = 0$ and p = p(z)
 - a. Shear-stress and velocity distribution inside the slit
 - b. Mean fluid velocity
 - c. Maximum fluid velocity

- Q.3 An incompressible, isothermal Newtonian fluid is held between two vertically placed co-axial cylinders. Determine the velocity distributions for the flow of the fluid when
 - (i) the outer cylinder is rotating at an angular velocity ω_2 while the inner cylinder is stationary.

(ii) The inner and outer cylinders are rotating at angular velocities of ω_1 and $\omega_{2,}$ respectively. Use Navier-Stoke's equation.

Q.4(a)	Briefly describe the Newtonian fluid behavior.	[3]
Q.4(b)	Write down the general categories of the non-Newtonian fluids.	[3]
Q.4(c)	Derive Rabinowitsch Equation for capillary flow	[6]

- Q.5 Consider a copper rod of circular cross-section with radius R and electrical conductivity K_e ohm⁻¹ cm⁻¹ [12] through where an electrical current with current density I amp cm⁻² is flowing. The transmission of an electrical current is an irreversible process and some electrical energy is converted to thermal energy. The rate of heat production per unit volume (S_e) is given by the expression $S_e=l^2/K_e$. The surface of the rod is maintained at temperature of T_o . Make a shell balance and obtained the temperature profile in the rod. Also find out the expression for heat flow at the surface.
- Q.6(a) A sphere of naphthalene having a radius of 2.0 mm is suspended in a large volume of still air at 318K [6] and 1.01325X10⁵ Pa (1 atm). The surface temperature of the naphthalene can be assumed to be at 318K and its vapor pressure at 318K is 0.555 mm of Hg. The D_{AB} of naphthalene in air at 318K is 6.92X10⁻⁶ m²/s. Calculate the rate of evaporation of naphthalene from the surface.
- Q.6(b) A test tube, 1.5 cm in diameter and 12cm tall, is partly filled with a solution of alkaline pyrogallate. [6] The depth of the empty space above the solution is 5 cm. The temperature is 25°C and the total pressure is 1 atmosphere. Air may be assumed to contain 21% O_2 and 79% N_2 . The diffusivity of O_2 in N_2 at the given condition is 0.21cm²/s. Calculate the rate of absorption of oxygen from air in solution at steady state if air flows gently over the open end of the test tube
- Q.7(a) Derive the concentration profile during the absorption of oxygen (O_2) into a falling water film. [12]

:::::24/04/2019 E::::

§B.4 THE EQUATION OF CONTINUITY^a

 $[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-1)

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-2)

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\rho v_\phi) = 0$$
(B.4-3)

^a When the fluid is assumed to have constant mass density ρ , the equation simplifies to $(\nabla \cdot \mathbf{v}) = 0$.

§B.5 THE EQUATION OF MOTION IN TERMS OF τ

 $[\rho D \mathbf{v} / D t = -\nabla p - [\nabla \cdot \boldsymbol{\tau}] + \rho \mathbf{g}]$

<i>Cylindrical coordinates</i> (r, θ, z) : ^b	
$\overline{\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_{\theta}^2}{r}\right)} = -\frac{\partial p}{\partial r} - \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r\tau_{rr}\right) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r}\right] + \rho g_r$	(B.5-4)
$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_{z}\frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} - \left[\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}\tau_{r\theta}) + \frac{1}{r}\frac{\partial}{\partial \theta}\tau_{\theta\theta} + \frac{\partial}{\partial z}\tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r}\right] + \rho g_{\theta}$	(B.5-5)
$(\partial v_1, \partial v_2, v_2, \partial v_3, \partial v_3) = \partial v \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r\frac{\partial v_z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_z\frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} - \left[\frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rz}) + \frac{1}{r}\frac{\partial}{\partial \theta}\tau_{\theta z} + \frac{\partial}{\partial z}\tau_{zz}\right] + \rho g_z \tag{B.5-6}$$

^b These equations have been written without making the assumption that τ is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric, $\tau_{r\theta} - \tau_{\theta r} = 0$.

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

 $[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$

Cylindrical coordinates (r, θ, z) :

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right] + \rho g_r \quad (B.6-4)$$

$$\rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} + \frac{v_r v_\theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta) \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right] + \rho g_\theta \quad (B.6-5)$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right] + \rho g_z \quad (B.6-6)$$