BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BE

TIME:

BRANCH: CHEM. ENGG. / CEP&P

3 Hours

SUBJECT: CL4005 NUMERICAL METHODS FOR CHEMICAL ENGINEERS

FULL MARKS: 60

SEMESTER : IV

SESSION: SP/19

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- _____
- Q.1(a) Graphically explain the Bisection method, Regula Falsi method and Newton-Raphson method in details. [2]
 Q.1(b) For turbulent flow of a fluid in a hydraulically smooth pipe, Prandtl's universal resistance law relates [4] the friction factor *f* and the Reynold's number Re, according to the following relationship

$$\frac{1}{\sqrt{f}} = -0.40 + 4Log_{10}(Re\sqrt{f})$$

Compute f for Re=10⁵, using the Bisection method lower guess 0.002, upper guess 0.01. Do three iterations Report your results in tabular form.

- Q.1(c) A circle of radius 2 units is intersected at two points, A and B by the curve, $e^x + y = 1$. Using an [6] appropriate numerical technique, determine the co-ordinates of point A OR point B. Report all intermediate values in a tabular form as explained in the class.
- Q.2(a) Compute inverse matrix of the following matrix using LU decomposition method.

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

Q.2(b) The following equations is obtained after a finite difference technique is applied to a particular [6] problem

$$x_1 + x_2 + x_3 = 6$$

$$2x_1 + 3x_2 + 4x_3 = 20$$

$$3x_1 + 4x_2 + 2x_3 = 17$$

Solve these linear set of equations using Gauss-Jordan technique and also obtain the inverse of the coefficient matrix.

Q.3(a) (x_n, y_n) , (x_{n-1}, y_{n-1}) and (x_{n-2}, y_{n-2}) using these data points (equispaced base points) along [2] Newton's backward differences prove that

$$y(x) = y_n + \alpha \nabla y_n + \frac{\alpha(\alpha+1) \nabla^2 y_n}{2!}$$
, where α is defined as $\alpha = \frac{x - x_n}{\Delta x}$

- Q.3(b) Find the Newton divided difference polynomial which interpolates the points (1.6, 2), (2, 8), (4, 8), [4] (4.5, 2).
- Q.3(c) Write a pseudo programming code for the Newton divided difference polynomial.
- Q.4(a) Derive the formula for a_0 and a_1 for linear fitting of set of data.
- Q.4(b) It is known that the tensile strength of a plastic increases as a function of the time it is heat treated. [4] The following data are collected

TIME	10	10	20	20	40	50	22	60	75
Tensile strength	5	20	18	40	33	54	70	60	78

Fit a straight line to this data and use the equation to determine the tensile strength at a time of 32 min.

Q.4(c) The following table gives the effect of the aromatics concentration, C_A , on the rate, r_A , of coke [6] formation on a metal plate during pyrolysis of naphatha in a jet stirred reactor, at 1083K. Determine the order of the reaction using the expression $r_A = kC^P_A$. Also determine the regression coefficient.

order of the reaction using the expression $T_A = \kappa c_A$. Also determine the regression coefficient											
10 ⁴ *C _A (kmol/m ³)	1.79	2.03	2.22	2.47	2.97	3.39	4.95	7.37	9.01	9.83	10.07
10 ² *r _A (kg/m ² - hr)	0.28	0.32	0.36	0.40	0.49	0.59	0.99	1.55	2.00	2.25	2.60

[6]

[2]

[6]

- Q.5(a) Prove that the trapezoidal rule is given by $\int_{x_0}^{x_n} y dx = \frac{h}{2}(y_0 + y_1 + y_3 + \dots + y_n)$ [2] Q.5(b) Velocity vs. time data for a car are given below. Find distance traversed by the car using a suitable [4]
- Q.5(b) Velocity vs. time data for a car are given below. Find distance traversed by the car using a suitable [4] numerical scheme.

		Velocity (km/hr)	0	22	30	27	18	7	0				
		Time (hr)	0	2	4	6	8	10	12				
Q.5(c)	.5(c) Radial velocity profile of a water flow in a pipe (R=5 cm) is given in the table below								w:	[6	6]		
	Radial dis	Radial distance from center, r(cm)			0	1	2		3	4	5		
	Velocity,	Velocity, u (cm/s)			4	3.84	3.36	õ 2.	.56	1.44	0		

- Q.6(a) Given $\frac{dy}{dx} + \frac{y}{1+x} = 0$ subjected to y(0) = 2. Find the value of y(1.5) using Runge-Kutta 4th order method. [6] Take h=0.5.
- Q.6(b) Solve the boundary value problem $\frac{d^2y}{dx^2} + \frac{4x}{1+x^2}\frac{dy}{dx} + \frac{2}{1+x^2}y = 0$, with boundary condition y(0)=1 and [6] y(2)=0.2. Take h=0.5.

[6]

[2]

[4]

- Q.6(c)
- Q.7(a) Exemplify parabolic and elliptic equations.
- Q.7(b) Briefly describe Neumann boundary condition for the solution of boundary value problem.
- Q.7(c) Solve the Laplace equation, $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$, for all 4 interior nodes of the figure below. The boundary [6] conditions in each face are shown in the figure. Take $\Delta x = \Delta y = 1$;

:::::29/04/2019 E:::::