BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

SEMESTER: IV

SESSION : SP/2019

CLASS: BE BRANCH: CHEM. ENGG./CEP&PE

SUBJECT: CL4001 HEAT TRANSFER OPERATIONS

TIA	٨E:	1.5 HOURS F	ULL MARKS: 25	
 INSTRUCTIONS: The total marks of the questions are 30. Candidates may attempt for all 30 marks. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. 				
Q1		Describe the Fourier's law of heat conduction with their assumptions. Derive an expression for the temperature distribution in a plane wall havin distributed heat sources and one face maintained at a temperature T_1 while face is maintained at a temperature T_2 . The thickness of the wall may be taken	e the other	
Q2	(a) (b)	Derive the expression for critical radius of insulation for sphere. A certain material has a thickness of 30cm and a thermal conductivity of 0. At a particular instant in time, the temperature distribution with x , the distribution with x , the distribution for $T = 150x^2 - 30x$, where x is in meters. Calculate the heat-flow and $x=30$ cm. Is the solid heating up or cooling down?	stance from	
Q3	(a) (b)	Describe the newton's law of cooling and thermal boundary layer. One end of a copper rod 30cm long is firmly connected to a wall that is ma 200°C. The other end is firmly connected to a wall that is maintained at 93° C. across the rod so that a heat-transfer coefficient of 17 W/m ² . ^o C is main diameter of the rod is 12.5 mm. The temperature of the air is 38° C. What is to lost to the air in watts?	Air is blown tained. The	
Q4	(a) (b)	Give the significance of these dimensionless numbers: Nusselt number, Pran Grashof number and Stanton number. Derive the expression for local and average heat transfer coefficient Nusselt flat plate.		
Q5	(a) (b)	What is significance of view factor? When is view factor from a surface to its A small surface of area $A_1 = 3 \text{ cm}^2$ emits radiation as a black body at $T_1 = 60$ the radiation emitted by A_1 strikes another small surface of area $A_2 = 5$ between normal to surface 1 and line of propagation is 55° whereas ang normal to surface 2 and line of propagation is 40°. Length of line of propagati surfaces is 75 m. Determine solid angle subtended by A_2 when viewed from a at which radiation emitted by A_1 strikes A_2 .	0 K. Part of [3] cm ² . Angle le between on between	
Q6	(a) (b)	How many types of resistances occur in radiation? Write expressions for then A grey surface of emissivity 0.348 and area 10 m ² radiates 1000 kW at 1500 K. be the effect of increasing the temperature to 1600°C?	n? [2] What would [3]	

:::: 05/03/2019 :::::E