BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH	BE I: CE/C&P	SEMESTER : IV SESSION : SP/19	
TIME:	SUBJECT: CL4001 HEAT TRANSFER OPERATIONS 3.00 Hrs.	FULL MARKS: 60	
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b) Q.1(c)	Explain heat conduction heat transfer through composite wall. Derive the general heat conduction equation of Fourier-Biot in Cartesian coordinates Derive the expression for heat conduction infinitely long rectangular fin. A plate having a thickness of 4.0 mm has an internal heat generation of 200MW/m ³ and a thermal conductivity of 25 W/m. ^o C. One side of the plate is insulated and the other side is maintained at 100 ^o C. Calculate the maximum temperature in the plate.		[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	Explain Transient heat transfer and periodic variation system with example. A thermocouple junction is in the form of 8mm diameter sphere. Properties of material are: $k=40W/m$. ^o C, density=8000kg/m ³ , c=420J/kg. ^o C, h=40W/m ² . ^o C. This junction is initially at 40 ^o C and inserted in a steam of hot air ay 300 ^o C. Find: (a) Time constant of the thermocouple, (b) Thermocouple is taken out from the hot air after 10 seconds and kept in still air at 30 ^o C. Assuming HTC in air 10w/m ² . ^o C, find temperature attained by the junction 20 seconds after removing from hot air. Describe the all methods of unsteady state non periodic heat conduction.		[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)) Explain and give the significance of these dimensionless numbers: Nusselt number, Prandtl number Grashof number and Stanton number.		[2] [4] [6]
- ()			
Q.4(a) Q.4(b) Q.4(c)	State and explain the Kirchhoff's law of radiation. Derive the expression for net heat exchange between two infinitely long parallel gray planes. Two large parallel plate one at 727°C with emissivity $\varepsilon_1 = 0.8$ and another at 227°C with emissivity $\varepsilon_2 = 0.4$. An aluminium radiation shield with an emissivity $\varepsilon_3 = 0.05$ on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield. Use $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2$.K ⁴ .		[2] [4] [6]
Q.5(a) Q.5(b)	Starting from basic derive an expression for effectiveness of parallel flow heat exchanger in terms of NTU and capacity ratio when cold fluid is treated as the minimum fluid.		[2] [4]
Q.5(c)			[6]
Q.6(a)	Sketch a 2-4 shell-tube heat exchanger with baffles and show fluid flow path.		[2]

Q.6(a)Sketch a 2-4 shell-tube heat exchanger with baffles and show fluid flow path.[2]Q.6(b)Write the main steps of Kern's method for the design of shell and tube heat exchanger.[10]

- Q.7(a) Write short notes on film wise and drop wise condensation.
- Q.7(b) A single effect evaporator is to concentrate 20000 lb / hr of 20% NaOH solution to 50% strength. Steam is available at a gauge pressure of 1.37 atm. The absolute pressure in the vapour space is 100 mmHg. The overall heat transfer coefficient is 1200 kcal/hr-m²-K. The feed temperature is 100 ⁰F. Calculate the heating surface required, and steam requirements.

Data-

Boiling point of water at 100 mmHg = $51.1 \, {}^{\circ}C$ Boiling point of 50% NaOH solution = $91.6 \, {}^{\circ}C$ Enthalpy of feed at 37.8 $\, {}^{\circ}C$ = $30.47 \, \text{kcal/kg}$ Enthalpy of thick liquor at its boiling point = $122.38 \, \text{kcal/kg}$ Enthalpy of water vapour at $91.6 \, {}^{\circ}C$ and 100 mmHg pressure = $635.7 \, \text{kcal/kg}$ Heat of vaporization of steam at 1.37 atm gauge pressure = $2185 \, \text{KJ/kg}$.

:::::26/04/2019 E::::

[4] [8]