BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	MTECH/PRE-PHD ENV. SC. & ENGG.	SEMESTER : II SESSION : SP/19
TIME:	SUBJECT : CE533 AIR POLLUTION CONTROL TECHNOLOGY 3.00 Hrs.	FULL MARKS: 50
INSTRUCT 1. The qua 2. Attemp 3. The mis 4. Before 5. Tables/	IONS: estion paper contains 5 questions each of 10 marks and total 50 marks. t all questions. ssing data, if any, may be assumed suitably. attempting the question paper, be sure that you have got the correct question Data hand book/Graph paper etc. to be supplied to the candidates in the exa	on paper. mination hall.
О 1(a) – Н	ow Doos on Emissions Inventory Contribute to the Air Quality Management Proces	se? How are Emissions

- [5] Q.1(a) How Does an Emissions Inventory Contribute to the Air Quality Management Process? How are Emissions Inventories Developed? [5]
- Q.1(b) Explain effects of criteria air pollutants on biotic components.
- Q.2(a) Explain the technique employed to sample particulate laden gas streams from stack? [5] Q.2(b) Select air quality description on the basis of PSI (Table 7.3), should be reported for the air pollution on [5] the days given?

ine days given:				
Pollutant	Day 1	Day 2	Day 3	
O3, 1 hr (ppm)	0.15	0.18	0.12	
CO, 8 hr, (ppm)	12	9	14	
PM10, 24 hr (microg/m3)	150	350	90	
SO2, 24 hr (ppm)	0.12	0.28	0.14	
NO2, 1 hr (ppm)	0.4	0.3	0.5	

- Q.3(a) A 1000 MW power plant burns 10,000 metric tons of 1.5% sulphur coal per day. The flue gases are [5] emitted into the atmosphere through a stack whose height is 200 m. the diameter of the stack at plume exit is 5 m. the velocity and the temperature of the plume at the exit are 10 m/s and 120 °C respectively. Determine the downwind SO_2 concentration in the plume centerline on the ground at a distance of 5 km on a thin overcast night when the environmental lapse rate is equal to zero? Assume that the ambient air temperature is 15 °C and the wind speed at the stack altitude is 6 m/s. [refer table 7.7, 7.8, 7.9]
- Q.3(b) An urban region can be thought of as composed of a multitude of point sources that fit into a box. If [5] the one side of the box is 30 km and its height is 200 m. determine the steady state CO concentration when the emission rate is 10,000 tons/day and the average wind speed is 3 m/s.? Assume suitable conditions as required.
- Q.4(a) An air stream containing particulate matter of density 1500 kg/m3 enters a cyclone flow at a volumetric [5] flow rate of 3.0 m3/s. the dimension of the cyclone are r1= 0.2 m, r2= 0.4 m and w= 0.5 m. determine the angle θ 1 that the flow must turn in the cyclone, if the efficiency is to be unity for 60 µm particles. The viscosity of air μ_{σ} = 1.84 x 10-5 kg/m-s. Also plot the efficiency as a function of particle diameter for this angle θ 1 (Fig. 1).
- A cylindrical precipitator having a diameter of 1.0 m and 6.0 m long handles dust particles of 2.5 micron Q.4(b) [5] in standard air. The volumetric flow rate of air is 0.2 m³/s. for an electric field strength of 150,000 v/m and $q_p = 1.0 \times 10^{-15}$ coulomb, determine the collection efficiency of the precipitator. [Cunningham correction factor $C = 1 + \frac{2\lambda}{d_p} (1.257 + 0.4e^{-0.55} p/\lambda)$ for standard air, $\lambda = 0.066 \mu m$. $\mu_g = 1.84 \times 10^{-5} \text{ kg/m}$ s].
- Q.5(a) Explain effect of air-to fuel ratio emissions, power and fuel economy.
- Q.5(b) Compare Bharat stages for vehicular emissions.