BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

CLASS:	M. Tech
BRANCH:	CEE

SEMESTER: II
SESSION : SP/19
SUBJECT: CE518 DYNAMICS OF SOIL AND FOUNDATIONS
TIME: $\quad 3$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) What are the forces acting on the mass of a single degree freedom system and hence derive the equation for amplitude for undamped free vibrations?
Q.1(b) The rotor of a motor having mass 4 kg was running at a constant speed of $40 \mathrm{c} / \mathrm{s}$ with an eccentricity of 150 mm . The motor was mounted on an isolator with damping factor 0.25 Determine the stiffness such that 20% of the unbalanced force is transmitted to the foundation. Also determine the magnitude of the transmitted force.
Q.2(a) Differentiate between particle wave velocity and wave propagation velocity. Derive the equation for wave propagation velocity when elastic waves travel in a rod of infinite length.
Q.2(b) A shot is fired at the ground surface on a particular location and observations from geophones are as in table 1. Determine the depth of soil layer from time intercept approach and critical distance approach.
Q.3(a) Explain the cyclic plate load test and hence to obtain coefficient of uniform compression.
Q.3(b) What are the general requirements of machine foundations?
Q.4(a) A retaining wall is 7 m high with back face inclined 20° and retains non cohesive backfill with $\gamma=18$ $\mathrm{KN} / \mathrm{m}^{3}, \Phi=32^{\circ}$ and $\delta=20^{\circ}$. The backfill is inclined to the horizontal by 10°. The wall is located in a seismic area where $a_{h}=0.10$ and $a_{v}=0.05$. Compute the dynamic earth pressure using Culmann's graphical method. CO4,K5, PO- a,h
Q.4(b) Write the equation for bearing capacity under pseudo-static analysis and explain the terms.
Q.5(a) Explain the method of evaluating zone of liquefaction in the field.
Q.5(b) Explain the various antiliquefaction measures (Any 5).

Table 1

Distance of geophone from shot point (m)	Travel time (Milli sec)
5	42.50
10	85.00
15	127.50
20	170.00
25	187.50
30	197.50
40	215.00

