BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M. Tech I: STRUCTURAL ENGINEERING	SEMESTER : II SESSION : SP/19
TIME:	SUBJECT: CE506 FINITE ELEMENT METHOD 3 Hours	FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b)	Explain the importance of minimum potential energy principle. Distinguish between direct stiffness method and finite element method of analysis	[5] s of structures. [5]
	Explain Galerkin Finite Element Method when applied to a bar element. Apply Galerkin Finite Element Method to solve the following boundary value probl $\frac{d^2y}{dx^2} + y = 2x \forall 0 \le x \le 1$ $y(0) = y(1) = 0$ $y^*(x) = c_1 \cdot x(1 - x^2)$	[5] em using one term: [5]
Q.3(a) Q.3(b)	Explain completeness requirement for shape/interpolating functions in context of Write down polynomial shape/interpolating functions numbered N_1 and N_5 for the $y = \frac{4}{x}$ $x = \frac{7}{8}$ $x = \frac{3}{1}$ $x = \frac{4}{5}$ $x = \frac{7}{2}$	
Q.4(a) Q.4(b)	Derive stiffness matrix for CST for plane stress conditions. (Note: Do not compute matrix operations or the integrals) Explain iso-parametric formulation for quadrilateral element.	[5] [5]
Q.5(a)	 Explain the following steps in context of any commercial FE Application: a) Pre-Processing b) Analysis c) Post-processing 	[5]
Q.5(b)	Evaluate the following integral using 2-point Gauss quadrature: $\int_{-1}^{1} \int_{-1}^{1} (1 + 2x + 3x^{2}y) dx dy$	[5]

:::::24/04/2019 M:::::