BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI		SEMESTER : II SESSION : SP/19					
TIME:	SUBJECT: BT416 ENZYME AND BIOPROCESS TECHNO 3.00 Hrs.	LOGY FULL MARKS: 50					
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 							
Q.1(a)	Describe the assumptions adopted for the unstructured and non-segreg microbial growth. Also, derive an expression for specific growth rate in 'S'.						
Q.1(b)	Describe the meaning of degree of reduction., Calculate the degree of reduction of substrate $[$						

- 0 5] C₁₂H₂₂O₁₁ and biomass CH_{1.66}O_{0.27}N_{0.20}.
- Q.2(a) Derive an expression for rate of reaction for single enzyme single substrate enzyme catalyzed reaction. [5]
- Q.2(b) L-Asparaginase was allowed for catalysis in presence of L-Asparagine. Following data were obtained. [5] Calculate V_{max} , K_m and k_2 . Given $[E_o] = 0.012 \text{ g/l}$.

V _o (g/l-min)	0.67	0.51	0.41	0.34	0.29
S _o (g/l)	20	10	6.7	5.0	4.0

- Q.3(a) How to prepare sterilized air for sparging in medium present in a CSTR? Construct a system for this. [5]
- [5] Q.3(b) What do you mean by Del factor? How will you use it for design of a batch sterilization process?
- Plan a method for determination of K_1 a of a medium containing Escherichia coli in its log phase. Q.4(a) [5]
- Compare a basic agitator with modern agitator (used in a CSTR) with respect to shape, mode of [5] Q.4(b) operation, medium characteristics and flow pattern of medium in side CSTR.
- 'For production of primary metabolites, CSTR operated in continuous mode is better than batch mode'. Q.5(a) [5] Justify the statement.
- Q.5(b) Draw a CSTR and lebel it. How will you change a batch CSTR into continuous CSTR? Write your strategy. [5]

:::::22/04/2019 M:::::