BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH BIOENGINNERING	SEMESTER : II SESSION : SP/19)
TIME:	SUBJECT: BE507 ADVANCED BIOSEPARATION ENGINEERING 3.00 Hrs.	FULL MARKS: 50	
INSTRUC 1. The c 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio ps/Data hand book/Graph paper etc. to be supplied to the candidates in the exar	n paper. nination hall.	
Q.1(a)	A suspension of spherical particles of 0.1 mm diameter was allowed to settle in a length. The density difference between the solid and liquid was 1.1 g/cm^3 and Calculate the settling time in centrifuge rotating at 400 rpm, if the distance between the axis a was 3 cm	column of 50 cm viscosity is 1 cP. ween the axis of and liquid surface	[5]
(b)	Calculate the settling velocity of limestone falling in water at 30 °C. Given: $D_p = 0$. 0.8 cP, water density 1000 kg/m ³ , particle density 2800 kg/m ³ , $C_D = 7.9$.	161 mm, viscosity	[5]
Q.2(a) (b) (c)	Explain the process and advantages of Super critical fluid extraction. Write adsorption isotherm equations. The solubility of a protein is 15 g/L at salt concentration of 2.2 M and 0.25 g/L at 3 M. calculate the solubility of the protein at 3.8 M of the salt.		[5] [2] [3]
Q.3(a) (b)	Vrite the basic principal and application of Ion exchange chromatography. Two analytes A and B are separated on a 25 cm column. The observed retention times were 7 min 20 sec and 8 min 20 sec respectively. A reference compound completely exhausted by stationary ohase is eluted out at 1 min 20 sec. considering number of theoretical plates are 1764, what is the resolution of these two peaks? What should be the minimum length of column in cm if we want ninimum good resolution?		[5] [5]
Q.4(a) (b)	Explain the mechanism of transport in MF system. Dialysis is used to recover a certain solute from a dilute solution of 2×10^{-2} kg m membrane to a solution having concentration of 0.3×10^{-2} kg mole/m ³ . The membrathick. Distribution coefficient is 0.75. Diffusivity is 3.5×10^{-11} m ² /s. mass transfer 3.5×10^{-5} m/s and 2.1×10^{-5} m/s respectively. Calculate (i) total resistance, (ii) flux as	ole/m ³ through a rane is 1.6×10 ⁻⁵ m r coefficients are t steady state and	[5] [5]

Q.5(a) Define various moisture contents with a suitable diagram.

(iii) total area in m^2 for a transfer of 0.01 kg mol solute/h.

[5] (b) It is desired to scale up a batch crystallization based on experiment with a one litter crystallizer. [5] The use of a 3 cm diameter impeller at a speed of 800 rpm led to good crystallization results. For maintaining power per volume const. upon scale-up to 300 litters, what should be the diameter and speed of large-scale impeller? Solvent has same viscosity and density of water.

:::::26/04/2019 M:::::