BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	BPHARM : PHARMACY	SEMESTER : IV SESSION : SP/18	
TIME:	SUBJECT: PS4409 PHARMACEUTICAL ENGINEERING I 3. Hours	FULL MARKS: 60	
 INSTRUCTIONS: The question paper contains 7 questions each of 12 marks and total 84 marks. Candidates may attempt any 5 questions maximum of 60 marks. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b) Q.1(c)	Write down the dimension of a) kinematic viscosity; b) power Do the dimension analysis of $\Delta p = f(D, U, \mu, \rho, L)$ where D: diameter of the pipe; U: linear velocity of the fluid; μ : viscosity of the fluid; ρ : density of the fluid; L: length of the pipe. Describe the working principle of differential manometer to measure the pressure drop.		[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	Define economy, capacity and steam consumption of an evaporator. Derive the equation for material and energy balance of a single effect evaporator with proper assumptions. What are the various factors affecting the economy of an evaporator? Discuss the effects in details.		[2] [4] [6]
Q.3	A solution of organic colloids is to be concentrated from 10 to 58% solids in a vertical tube evaporator. The solution has a negligible elevation in boiling pint, and the specific heat of the feed is 0.95 J/g. °C. Saturated steam is available at 0.8 atm abs (95°C), and the pressure in the condenser is 100 mm Hg abs (45°C). The feed enters at 20 °C. The overall heat transfer coefficient is 1764 W/m2. °C. The evaporator must evaporate 25000 kg of water per hour. The heat of vaporization of steam λ_s at 0.8 atm abs is 2273 KJ/Kg. The enthalpy of superheated water vapour at 100 mm Hg abs (H _v) is 2378 KJ/Kg.		
Q.3(a) Q.3(b) Q.3(c)	What is the feed rate in kg/h? What is the steam consumption in kg/h? How many square meter of surface are required?		[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	Which law governs the radiation? Describe the working principle of climbing film type evaporator with diagram. Discuss the advantages of multiple effect evaporator over single effect evaporat the different types of feeding in multiple effect evaporator with diagram.	or. Discuss in detail	[2] [4] [6]
Q.5(a)	When the ratio of outer diameter to the inner diameter is 2.0 the error in th mean is 4%. Prove it.	e use of arithmetic	[2]
Q.5(b)	Do the integration over total surface and conceptualize logarithmic mean tem with proper assumptions.	perature difference	[4]
Q.5(c)	A standard 1-inch Schedule 40 steel pipe (outside diameter = 3.35 cm; inside of and thickness = 0.33 cm) carries saturated steam at 140°C. The pipe is insulated 85 percent magnesia pipe covering, and outside this magnesia there is a 40 mm inside temperature of the pipe wall is 138°C, and the outside temperature of Thermal conductivities in W/m. °C, are: for steel, 45; for magnesia, 0.0588 Calculate a) the heat loss from 100 m of pipe in Watts; b) the temperature between metal and magnesia and between magnesia and cork.	with 60 mm layer of n layer of cork. The f the cork is 28°C. ; for cork, 0.0519.	[6]
Q.6(a)	Logarithmic mean temperature difference (LMTD) is not always valid. Establish examples.	the statement with	[2]
Q.6(b)	Deduce the equation to calculate the overall heat transfer coefficient from inconsidering both outside area and inside area of the pipe.	dividual coefficients	[4]