BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BIECH		SEMESTER : III
BRANCH:	PROD.		SESSION : MO/19
		SUBJECT: PE203-OPERATIONS RESEARCH	
TIME:	3 HOURS		FULL MARKS: 50
INSTRUCT	IONS:		
1. The que	estion paper con	itains 5 questions each of 10 marks and total 50 ma	arks.
2. Attemp	t all questions.		
3. The mis	ssing data, if any	y, may be assumed suitably.	
4. Before	attempting the o	question paper, be sure that you have got the corre	ect question paper.
5. Tables/	'Data hand book/	/Graph paper etc. to be supplied to the candidates	in the examination hall.

- Q.1(a) Explain various types of O.R models and indicate their application to production Inventory and [2] distribution system.
- Q.1(b) A firm can produce three types of cloth, say: A, B, and C. Three kinds of wool are for it, say: red, [8] green and blue wool. One unit length of type A cloth needs 2 meters of red wool and 3 meters of blue wool; one unit of type B cloth needs 3 meters of red wool, 2meters of green wool and 2 meters of blue wool; and one unit of C type cloth needs 5 meters of green wool and 4 meters of blue wool. The firm has only a stock of 8 meters of red wool, 10 meters of green wool and 15 meters of blue wool. It is assumed that the income obtained from one unit length of type A cloth is Rs. 3.00, of type B cloth is Rs. 5.00, and of type C cloth is Rs. 4.00. Formulate and solve this problem in order to maximize total profit.
- Q.2(a) Define (i) A Feasible Solution (ii) An unbounded Solution.
- Q.2(b) A firm manufactures two types of product X and Y and sells them of profit of Rs. 2 on type X and Rs. [8] 3 on type Y. Each product is processed on two machine G and H. Type X requires one minute of processing time on G and two minutes on H. Type Y requires one minute on G and one minute on H. The machine G is available for not more than 6 hours 40 minutes while machine H is available for 10 hours during any working day. Solve the problem.
- Q.3(a) Solve by simplex method: Maximize $Z = 3X_1 + 2X_2$ Subject to:

.

- $X_1 + X_2 \le 4$
 - $X_1 X_2 = 1$ $X_1 - X_2 \le 2$
 - $X_1, X_2 \ge 0$
- Q.3(b) A company has three plants A, B and C and three warehouses X, Y and Z. Number of units available at [5] the plants is 60, 70 and 80 respectively. Demands at X, Y, and Z are 50, 80 and 80 respectively. Unit costs of transportation are as follows in table 1 :

TABLE 1

	X	Y	Z	Available
Α	8	7	3	60
В	3	8	9	70
С	11	3	5	80
Requirement	50	80	80	

What would be your transportation plan? for initial feasible solution use VAM and find the minimum distribution cost

[2]

[5]

Q.4(a) Five operators have to be assigned to 5 machines. The Assignment cost are given in table 2. Operator [5] A cannot be operate Machine III and operator C cannot be operate Machine IV. Find the optimal assignment.

$\textbf{Machines} \rightarrow$	I	II	III	IV	V
Operator \downarrow					
Α	5	5		2	6
В	7	4	2	3	4
С	9	3	5		3
D	7	2	6	7	2
E	6	5	7	9	1

TABL	E 2
------	-----

Q.4(b) Find the sequence that minimizes the total elapsed time required to complete the following tasks. [5] Each job is processed in the order A-B-C as shown in table 3.

$Job \rightarrow$	1	2	3	4	5	6
Machine						
Ļ						
Α	8	3	7	2	5	1
В	3	4	5	2	1	6
С	8	7	6	9	10	9

TABLE:3

- Q.5(a) A branch of office has only one typist. Since the typing work varies in length, the mean service rate 8 letters/hour. The letters arrive at a rate of 5 per hour during the entire 8 hours workday. If the typewriter is valued at Rs. 1.50 per hour, determine:
 - (i) The equipment utilization.
 - (ii) The percent time that an arriving letter has to wait.
 - (iii) The average time spends in the system.
- Q.5(b) Reduce the following game by dominance and find the game value:

TABLE 4	4
---------	---

PLAYER A→	1	П	111	IV	V
PLAYER B					
\downarrow					
1	1	3	2	7	4
II	3	4	1	5	6
Ш	6	5	7	6	5
IV	2	0	6	3	1

:::::04/12/2019:::::M

[5]