BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc/MSc SEMESTER: VII / I BRANCH: PHYSICS SESSION: MO/2024

SUBJECT: PH403 CLASSICAL MECHANICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Define degrees of freedom, constraints, generalized coordinates, generalized	[5]	CO 1	BL 1
Q.1(b)	momenta and a conservative system. Write down the expression for the Lagrange's equation of motion. Determine the Lagrangian and Lagrange's equation of motion for a simple pendulum.	[5]	1	1,3
Q.2(a) Q.2(b)	Define Hamiltonian and derive Hamilton's equations of motion. Derive Hamiltonian and Hamilton's equations of motion for a one-dimensional harmonic oscillator.	[5] [5]	2 2	1,2 1,2,3
Q.3(a) Q.3(b)	State the conditions for a canonical transformation. State and prove Poisson's theorem.	[5] [5]	3	2 1,3
Q.4(a) Q.4(b)	Define inertial frames, non-inertial frames, fictitious and Coriolis forces. Derive the expression for rotational kinetic energy of a rigid body.	[5] [5]	4 4	1 4
Q.5(a)	Explain stable, unstable and neutral equilibrium. Also, provide a brief discussion on potential energy of a one-dimensional oscillator for oscillation around a position of stable equilibrium.	[5]	5	4
Q.5(b)	Derive equations of motion for a double pendulum.	[5]	5	3,4

:::::22/11/2024::::E