BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: IMSc SEMESTER: V
BRANCH: PHYSICS SESSION: MO/2024

SUBJECT: PH318 NUCLEAR AND PARTICLE PHYSICS

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) Q.1(b)	What are Isotopes, Isobars and Isotones? Explain with examples. Define Nuclear Form factor. Compute it for a nucleus of atomic number Z, assuming it as sphere of radius R of uniform charge density.	[2] [3]	CO 1 1	BL 1 1,2
Q.2(a)	Define Binding energy of a Nucleus. Draw the Binding energy per nucleon vs mass	[2]	1	1,2
Q.2(b)	number (A) curve and give some salient features of it. Derive the Bethe-Weizacker Semi-Empirical mass formula for the binding energy of the nucleus and explain the various terms in it.	[3]	1	2,3
Q.3(a) Q.3(b)	Define fermi energy for a degenerate fermion gas. Compute the total average energy of a nucleus made of Z protons and N neutrons according to the Fermi gas model of the nucleus and show that it has an "asymmetry term" proportional to $(N-Z)^2/A$.	[2] [3]	1	1 3
Q.4(a)	What are Magic numbers? Which of these nuclei have magic number of protons	[2]	1	1,2
Q.4(b)	and/or neutrons: ¹⁵ N, ³⁹ K, ⁴⁸ Ni ? What are the evidences in favor of the shell model of the nucleus ?	[3]	1	1,2
Q.5(a)	Define Radioactivity. What are the kinds of radiation emitted by Radioactive elements and what are their properties?	[2]	2	1
Q.5(b)	Define half-life of a Radioactive nucleus. A piece of ancient wooden boat shows an activity of ¹⁴ C equal to 3.9 decays/minute/gm. Estimate the age of the boat if the half-life of ¹⁴ C is 5568 years. Assume the activity of pure fresh ¹⁴ C as 15.6 decays/minute/gm.	[3]	2	1,3

:::::24/09/2024:::::E