BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: IMSc SEMESTER: V
BRANCH: PHYSICS SESSION: MO/2024

SUBJECT: PH203 CLASSICAL DYNAMICS

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) Q.1(b)	State Newton's three laws of motion. What is the principle of superposition of forces?	[2] [3]	CO 1	BL 1,2
Q.2(a) Q.2(b)	What is the physical significance of the cyclotron frequency $\omega=qB/m$? For a particle of charge +q being acted upon by a magnetic field in the y-direction, set up the equations of motion by using the Lorentz Force Law (no need to solve them).	[2] [3]	1	2 2,3
Q.3(a)	What is the advantage of using generalized coordinates? Is the set of generalized	[2]	2	2
Q.3(b)	coordinates unique? Find the equation of motion of a mass 'm' attached to a wall by means of a spring of spring constant 'k', using the Euler-Lagrange equation.	[3]	2	3
Q.4(a)	How are the Lagrangian and the Hamiltonian related? What is the transformation	[2]	2	1,2
Q.4(b)	called? Using the above relation, derive the Hamilton's equations of motion.	[3]	2	2
Q.5(a)	Mathematically show that for small enough displacements of a body from its equilibrium position, the potential acting on it can be approximated by a harmonic	[2]	3	3
Q.5(b)	potential. Derive the equation $ V_{jk} - \omega^2 T_{jk} = 0$, starting from the quadratic forms of the kinetic and the potential energies.	[3]	3	2,3

:::::20/09/2024:::::E