BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: I SESSION: MO/2024 **BRANCH: MECHANICAL ENGINEERING**

SUBJECT: ME521 COMPUTATION METHODS IN ENGINEERING

TIME: 3 Hours **FULL MARKS: 50**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

CO BL CO2 3 Q.1(a) Solve the following equations by Gauss – Jordon method: [5]

$$X + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

Q.1(b) Find a Q R factorization Of a matrix [5] CO1 5

And also check $QR \rightarrow A$ or not.

- CO1 5 Q.2(a) Using the Secant method find an approximate value of $\sqrt{12}$ of correct to three [5] decimal places.
- By means of Lagrange's formula, show that Q.2(b) [5] C02 2 $y_1 = y_3 - 0.3 (y_5 - y_{.3}) + 0.2 (y_{.3} - y_{.5})$
- Q.3(a) Evaluate [5] CO3 5 $\int_{-1}^{1} \frac{1}{1+x^2}$

Using (i) one point Gaussian formula

- (ii) two point Gaussian formula
- Use Romberg's method or integration to compute CO3 3 Q.3(b) [5] $\int_0^1 \frac{1}{1+x^2} dx$, correct to three decimal places

taking h= 0.5, 0.25 and 0.125 and also find the approximate value of π .

- Q.4(a) Check a criteria for stability of the system [3] CO1 4 $\frac{dy}{dx} = -y$ Using the Euler's method.
- Q.4(b) Using Adams- Bash- forth Moulton method find CO4 5 [7]

Y(0.4) if $f(x,y) = \frac{dy}{dx} = 0.5 xy$ using table given below:

Х	у
0	0
0.1	1.01
0.2	1.022
0.3	1.023

Q.5(a) Develop a Crank - Nicholson's scheme formula and using derived scheme solve [10] CO5 6

$$U_{xx} = 16 \ u_t \ , \\ 0 < x < 1 \ , \ t > 0$$

Given u(x,0) = 0, u(0,t) = 0 and u(1,t) = 100t

Simulate u in t direction taking h=0.25.