BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH SEMESTER: VII **BRANCH: MECHANICAL** SESSION: MO 24

SUBJECT: ME401 REFRIGERATION AND AIR CONDITIONING

TIME: **FULL MARKS: 50** 3 Hours

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.

 Q.1(a) With neat sketch, explain the construction of Bootstrap air- refrigeration system. Also show the various processes in T-s diagram. Q.1(b) An aircraft refrigeration plant has to handle a cabin load of 25 tonnes. The atmospheric temperature is 16°C. The atmospheric air is compressed to a pressure 0.96 bar and temperature of 29°C due to ram action. This is then further compressed in a compressor to 4.8 bar, cooled in a heat exchanger to 66°C, expanded in a turbine to 1 bar pressure and supplied to the cabin. The air leaves the cabin at a temperature of 26°C. The isentropic efficiencies of both compressor and turbine are 0.9. Calculate: (i) Mass of air circulated per minute (ii) COP take γ = 1.4 and c_p = 1.005 kJ/kg. Q.2(a) Discuss the effect of operating conditions on performance of SSS-VCRS with the help of p-h diagram. Q.2(b) Simple saturated vapour compression refrigeration system using NH₃ has a capacity of 25 TR. Evaporator and condenser temperature are -5°C and 40 °C respectively. Calculate: (a) Mass flow rate of refrigerant (b) COP Take c_{pv} = 2.1897 kJ/kgK. Properties are given below: Saturation h_f, kJ/kg h_g, kJ/kg s_f, kJ/kgk s 				co	В		
Q.1(b) An aircraft refrigeration plant has to handle a cabin load of 25 tonnes. The atmospheric temperature is 16°C. The atmospheric air is compressed to a pressure 0.96 bar and temperature of 29°C due to ram action. This is then further compressed in a compressor to 4.8 bar, cooled in a heat exchanger to 66°C, expanded in a turbine to 1 bar pressure and supplied to the cabin. The air leaves the cabin at a temperature of 26°C. The isentropic efficiencies of both compressor and turbine are 0.9. Calculate: (i) Mass of air circulated per minute (ii) COP take $\gamma = 1.4$ and $c_p = 1.005 \frac{kJ}{kg}$. Q.2(a) Discuss the effect of operating conditions on performance of SSS-VCRS with the help of p-h diagram. Q.2(b) Simple saturated vapour compression refrigeration system using NH ₃ has a capacity of 25 TR. Evaporator and condenser temperature are -5°C and 40 °C respectively. Calculate: (a) Mass flow rate of refrigerant (b) COP Take $c_{pv} = 2.1897 \text{ kJ/kgK}$. Properties are given below:	Q.1(a)		n [5]	1	3		
help of p-h diagram. Q.2(b) Simple saturated vapour compression refrigeration system using NH ₃ has a [5] 2 capacity of 25 TR. Evaporator and condenser temperature are -5°C and 40 °C respectively. Calculate: (a) Mass flow rate of refrigerant (b) COP Take c _{pv} = 2.1897 kJ/kgK. Properties are given below:	Q.1(b)	An aircraft refrigeration plant has to handle a cabin load of 25 tonnes. The atmospherit temperature is 16°C. The atmospheric air is compressed to a pressure 0.96 bath and temperature of 29°C due to ram action. This is then further compressed in a compressor to 4.8 bar, cooled in a heat exchanger to 66°C, expanded in turbine to 1 bar pressure and supplied to the cabin. The air leaves the cabin at temperature of 26°C. The isentropic efficiencies of both compressor and turbine are 0.9. Calculate: (i) Mass of air circulated per minute (ii) COP	r n a t	1	4		
capacity of 25 TR. Evaporator and condenser temperature are -5°C and 40 °C respectively. Calculate: (a) Mass flow rate of refrigerant (b) COP Take c _{pv} = 2.1897 kJ/kgK. Properties are given below:	Q.2(a)		e [5]	[5] 2 3			
Properties are given below:	Q.2(b)	Simple saturated vapour compression refrigeration system using NH ₃ has capacity of 25 TR. Evaporator and condenser temperature are -5°C and 40° respectively. Calculate: (a) Mass flow rate of refrigerant		2	2		
		Take $c_{pv} = 2.1897 \text{ kJ/kgK}$.					
Saturation h_f , kJ/kg h_g , kJ/kg s_f , kJ/kgk s		Properties are given below:					
			S				

Saturation	h _f , kJ/kg	h _g , kJ/kg	s _f , kJ/kgk	S
temperature, °C				
-5	176.9	1456.1	0.9154	5
40	390.6	1490.4	1.6437	5

- Q.3(a) Show that, the $COP_{ideal\ VARS} = COP_{carnot} \times \eta_{Carnot}$. Also, list the advantages of [5] 3 VARS over VCRS. Q.3(b) With suitable sketch, explain the construction and working of Electrolux [5] 2 refrigerator. Q.4(a) 0.006 kg of water vapour per kg of atmospheric air is removed and temperature [5] 4 of air after removing the water vapour becomes 22°C. Determine using psychrometry relations:
 - i. Relative humidity,
 - Dew point temperature.

Assume that the condition of atmospheric air is 35°C, relative humidity is 60% and pressure is 1.0132 bar.

Q.4(b)	Air at 35°C DBT and 22°C WBT is passed through a cooling coil. The apparatus dew point of the cooling coil is 4°C. The heat extracted by the cooling coil from air is 12 kW and the air flow rate is 45 m³/min. Determine using psychrometry charts: i. Relative humidity of the air passing through the coil, ii. DBT, WBT and relative humidity of the air leaving the coil, Coil by-pass factor.	[5]	4	4
Q.5(a) Q.5(b)	What is freeze drying. Discuss the equipment's used in freeze drying process. With a neat sketch, explain the construction and working of Ice plant.	[5] [5]	5 5	3 4

:::::22/11/2024:::::M