BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: BTECH SEMESTER: V
BRANCH: MECHANICAL SESSION: MO/2024

SUBJECT: ME367 INDUSTRIAL TRIBOLOGY

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) Q.1(b)	State four applications or roles of tribology in daily life. A rough surface has a profile given by $z(x) = a\cos\left(\frac{\pi}{a}x\right)$. Find the values of R_a and R_q .	[2] [3]	CO 1 1	BL 2 3
Q.2(a) Q.2(b)	Differentiate between physiosorbed and chemisorbed layer with illustration. Explain skewness and kurtosis along with their formula, range of values and physical significance with a neat sketch.	[2] [3]	1 1	3 2
Q.3(a) Q.3(b)	Explain the stick-slip phenomenon along with some of its practical implications. Considering a hard spherical asperity, find out the expression for the coefficient of friction predicted by the deformation theory of friction.	[2] [3]	2 2	2 3
Q.4(a)	A hard conical asperity of semi-angle 70° is slid against a soft metal surface which produces a groove of 2.5 mm width. For a measured coefficient of friction of 0.48 and considering friction due to adhesion and ploughing in additive mode, calculate adhesive component of friction coefficient.	[2]	2	3
Q.4(b)	Consider a micro-scale friction measurement using a hard ball of radius 2.83 mm sliding against a soft and flat surface. The overall friction coefficient is measured as 0.25, and the groove produced during sliding has a width of 1 mm. The interfacial shear strength at the contact is found to be one-tenth of the bulk value. Assuming friction due to multiple mechanisms acting in additive mode, calculate the contribution from different mechanisms towards friction.	[3]	2	4
Q.5(a) Q.5(b)	Illustrate with a neat sketch the mechanism of two body and three body abrasion. Formulate the expression for non-dimensional wear coefficient K in abrasive wear considering a hard conical asperity.	[2] [3]	3	2

:::::25/09/2024:::::M