BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: BTECH SEMESTER: V
BRANCH: MECHANICAL SESSION: MO/2024

SUBJECT: ME303 MECHANICAL VIBRATION

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

			CO	BL
Q.1(a)	Explain the term 'Logarithmic decrement' as applied to damped vibrations.	[2]	1,5	2
Q.1(b)	Determine the natural frequency of the system shown in Figure 1. The point A	[3]	1,3,5	3
	(where the ends of the springs are attached to the cylinder) is at a distance a			
	vertically above the center. The cylinder rolls without slip from its equilibrium			
	position.			

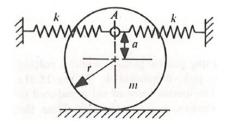


Figure 1

Q.2(a)	Explain 'Transmissibility ratio' of a spring, mass, damper system subjected to	[2]	1	2
	harmonic force excitation.			

Q.2(b) A machine of mass m = 200 kg is supported on two mounts, each of stiffness k = [3] 1, 5 10 kN/m as shown in Figure 2. The machine is subjected to an external force (in N) $F(t) = 50 \cos 5t$. Assuming only vertical translatory motion, determine the magnitude of the dynamic force (in N) transmitted from each mount to the ground.

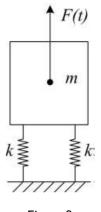


Figure 2

3

- Q.3(a) Explain different types of 'Coordinate coupling' in two degrees of freedom [2] 1,2 2 system of vibrations.
- Q.3(b) Write the equations of motion for the system shown in Figure 3, and determine [3] 1,2,3,5 3 its natural frequencies.

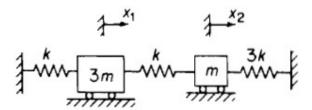
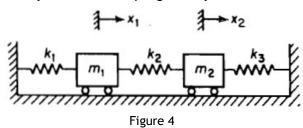



Figure 3

- Q.4(a) Explain flexible and stiffness influence coefficients for a multi degree of freedom [2] 1,2 2 system.
- Q.4(b) Derive the flexibility matrix for the spring-mass system shown in Figure 4. [3] 1,2,5 6

Q.5 Derive the orthonormal normal modes and corresponding modal matrix for the [5] 1,2,3,5 6 spring-mass system shown in Figure 3.

:::::19/09/2024:::::M